• 제목/요약/키워드: automatic segmentation

검색결과 512건 처리시간 0.022초

Object segmentation and object-based surveillance video indexing

  • Kim, Jin-Woong;Kim, Mun-Churl;Lee, Kyu-Won;Kim, Jae-Gon;Ahn, Chie-Teuk
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1999년도 KOBA 방송기술 워크샵 KOBA Broadcasting Technology Workshop
    • /
    • pp.165.1-170
    • /
    • 1999
  • Object segmentation fro natural video scenes has recently become one of very active research to pics due to the object-based video coding standard MPEG-4. Object detection and isolation is also useful for object-based indexing and search of video content, which is a goal of the emerging new standard, MPEG-7. In this paper, an automatic segmentation method of moving objects in image sequence is presented which is applicable to multimedia content authoring for MPEG-4, and two different segmentation approaches suitable for surveillance applications are addressed in raw data domain and compressed bitstream domains. We also propose an object-based video description scheme based on object segmentation for video indexing purposes.

자동 윈도우 크기 결정 기법을 적용한 Minimum Entropy Clustering과 Iterative Over-Segmentation 기반 Semantic Segmentation (Semantic Segmentation using Iterative Over-Segmentation and Minimum Entropy Clustering with Automatic Window Size)

  • 최형욱;송현승;손홍규;전문구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.826-829
    • /
    • 2014
  • 본 연구에서는 야외 지형 영상 및 항공 영상 등에 대하여 각각의 영역들의 속성을 분할 및 인식 하기 위해 minimum entropy clustering 기반의 군집화 기법과 over-segmentation을 반복 적용하여 군집화 하는 두 방법을 융합한 기법을 제안하였다. 이 기법들을 기반으로 각 군집의 대표 영역을 추출한 후에 학습 데이터를 기반으로 만들어진 텍스톤 사전과 학습 데이터 각각의 텍스톤 모델을 이용하여 텍스톤 히스토그램 매칭을 통해 매칭 포인트를 얻어내고 얻어낸 매칭 포인트를 기반으로 영역의 카테고리를 결정한다. 본 논문에서는 인터넷에서 얻은 일반 야외 영상들로부터 자체적으로 제작한 지형 데이터 셋을 통해 제안한 기법의 우수성을 검증하였으며, 본 실험에서는 영역을 토양, 수풀 그리고 물 지형으로 하여 영상내의 영역을 분류 및 인식하였다.

MRI 영상을 이용한 한국인 인체 두부의 FDTD 모델링 (FDTD Modeling of the Korean Human Head using MRI Images)

  • 이재용;명노훈;최명선;오학태;홍수원;김기회
    • 한국전자파학회논문지
    • /
    • 제11권4호
    • /
    • pp.582-591
    • /
    • 2000
  • 본 논문에서는 휴대전화기에 의한 인체 영향을 FDTD (시간영역 유한차분법) 해석할 수 있도록 한국인 표준 에 알맞는 인체 두부의 FDTD 모텔 제작 방법을 소개하였다. 한국인 표준에 알맞은 사람의 두부를 MRI 촬영한 다음.2차원 MRI 영상 데이터를 이용하여 2차원 segmentation을 하였다. segmentation은 반자동법을 적용하였 으며 제작된 2차원 se밍nentation 데이터를 토대로 $1mm\times1mm\times1mm$크기의 3차원 고해상도 segmentation 데이터를 제작하였다. 3차원 고해상도 segmentation 데이터를 이용하여 휴대전화기의 사용 상황에 어올리도록 다양한 각도로 기울인 인체 두부의 FDTD 모델을 제작하였다.

  • PDF

음향 및 음소 정보를 이용한 연속제의 자동 음소 분할에 대한 연구 (A Study on Automatic Phoneme Segmentation of Continuous Speech Using Acoustic and Phonetic Information)

  • 박은영;김상훈;정재호
    • 한국음향학회지
    • /
    • 제19권1호
    • /
    • pp.4-10
    • /
    • 2000
  • 본 논문은 자동 음소 분할기의 음소 경계 오류를 보상하기 위한 후처리(Postprocessing)에 관한 연구이다. 자동 분절 경계의 오류 범위를 줄일 수 있는 후처리기를 제안하고, 자동 분절 결과를 직접 합성 단위로 사용할 수 있는 대량의 합성용 운율데이터 베이스 구축에 유용함을 기술한다. 제안된 후처리기는 수작업으로 보정된 데이터의 특징벡터를 다층 신경회로망(MLP: Multi-layer perceptron)을 통해 학습을 한 후, 자동 분절 결과와 MLP 기반 후처리를 이용하여 새로운 음소 경계를 추출한다. 우선, 특징벡터 set은 음성학적 지식이 최대한 반영되도록 선정되었다. 그리고, 경계를 추출하기 위해서 비선형 패턴분리에 탁월한 성능을 보이는 MLP를 이용한다. MLP는 매우 다양하게 나타나는 음소 경계간 음성학적 특징을 단시간 내에 적용할 수 있기 때문이다. 마지막으로, 음운환경별로 특징 벡터가 적용되는 제안된 후처리 알고리즘을 이용하여 자동 분절의 경계 오류에 대한 보상이 이루어진다. 문장 단위로 발화된 합성용 데이터베이스에서 후처리기로 보정된 분절 결과는 음성 언어 번역 시스템의 분할율보다 약 19.9%의 향상된 성능을 보였으며, 절대오류 (|Hand label position-Auto label position|)는 약 28.6% 감소되었다.

  • PDF

MR 영상에서 밝기값 분포 및 기울기 정보를 이용한 활성형상모델 기반 전립선 자동 분할 (Automatic Prostate Segmentation in MR Images based on Active Shape Model Using Intensity Distribution and Gradient Information)

  • 장유진;홍헬렌
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권2호
    • /
    • pp.110-119
    • /
    • 2010
  • 본 논문에서는 MR 영상에서 밝기값 분포와 기울기 정보를 이용한 전립선 자동 분할 기법을 제안한다. 첫째, 적응적 밝기값 프로파일과 다해상도 기법을 이용하는 활성형상모델을 통해 전립선 표면을 추출한다. 둘째, 표면 형상의 지역적 최적화로 인한 흘을 방지하기 위하여 기하학 정보를 이용한 흘 제거 기법을 수행한다. 셋째, 해부학적으로 변이가 큰 표면 형상은 2차원 기울기 정보를 이용하여 보정한다. 이때, 보정된 표면 형상은 한정된 정점의 개수로 산정되어 매끄럽게 표현되지 않기 때문에 표면재구성 및 평활화 기법을 이용하여 부드러운 형상으로 표현한다. 제안방법의 평가를 위하여 육안평가와 정확성 평가 그리고 수행시간을 측정하였다. 정확성 평가는 두 명의 임상전문의의 수동분할 결과와 자동분할 결과 간의 평균거리차이와 중복볼륨비율을 측정하였다. 실험 결과 평균거리차이는 0.3${\pm}$0.21mm 측정되었고, 중복볼륨 비율은 96.31${\pm}$2.71% 측정되었다. 20명의 환자 데이터에 대한 전체 수행시간은 평균 16초로 측정되었다.

색상지수 기반의 식물분할을 위한 다층퍼셉트론 신경망 (A Multi-Layer Perceptron for Color Index based Vegetation Segmentation)

  • 이문규
    • 산업경영시스템학회지
    • /
    • 제43권1호
    • /
    • pp.16-25
    • /
    • 2020
  • Vegetation segmentation in a field color image is a process of distinguishing vegetation objects of interests like crops and weeds from a background of soil and/or other residues. The performance of the process is crucial in automatic precision agriculture which includes weed control and crop status monitoring. To facilitate the segmentation, color indices have predominantly been used to transform the color image into its gray-scale image. A thresholding technique like the Otsu method is then applied to distinguish vegetation parts from the background. An obvious demerit of the thresholding based segmentation will be that classification of each pixel into vegetation or background is carried out solely by using the color feature of the pixel itself without taking into account color features of its neighboring pixels. This paper presents a new pixel-based segmentation method which employs a multi-layer perceptron neural network to classify the gray-scale image into vegetation and nonvegetation pixels. The input data of the neural network for each pixel are 2-dimensional gray-level values surrounding the pixel. To generate a gray-scale image from a raw RGB color image, a well-known color index called Excess Green minus Excess Red Index was used. Experimental results using 80 field images of 4 vegetation species demonstrate the superiority of the neural network to existing threshold-based segmentation methods in terms of accuracy, precision, recall, and harmonic mean.

원격 자동 검침을 위한 효과적인 계량기 숫자 분할 (An Efficient Numeric Character Segmentation of Metering Devices for Remote Automatic Meter Reading)

  • 보반 토안;정선태;조성원
    • 한국멀티미디어학회논문지
    • /
    • 제15권6호
    • /
    • pp.737-747
    • /
    • 2012
  • 최근 들어, 기존 계량기에서의 원격 자동 검침을 지원하기 위한 영상 기반 계량기 데이터 숫자 인식에 대한 관심이 증대되고 있다. 성공적인 숫자 인식을 달성하는 데 숫자 분할은 매우 중요한 과정이다. 본 논문에서는 다양한 조명하의 다양한 계량기들에 대해서 잘 수행되는 효과적인 계량기 숫자 분할 방법을 제안한다. 제안된 계량기 숫자 분할 방법은 먼저 계량기 전체 숫자 영역을 정교한 관심영역으로 검출하고, 이후 검출된 관심영역에서 각 숫자를 분할하는 2단계로 구성된다. 정교한 관심영역 검출은 조명 개선 전처리 후에 수평 라인 세그먼트를 이용한 개략적 관심영역 추출, 이진화후 수직 및 수평 투영을 이용한 클리핑을 통한 개략 관심영역 정교화 등의 과정으로 처리된다. 검출된 관심영역에서의 숫자 분할은 '숫자 구역 수직 분할' 및 '수직 분할된 각 숫자 구역에서의 숫자 분할' 등의 2개 과정을 통해 안정적으로 분할되도록 처리된다. 저대비, 저저도, 음영, 포화 등 다양한 조명 환경하의 다양한 계량기 종류에 대해 직접 촬영하여 자체 제작한 계량기 이미지 데이터베이스에 기반한 실험을 통해 본 논문에서 제안한 숫자 분할 방법을 평가하고, 제안방법이 다양한 조명 환경하의 다양한 계량기 타입에 대해서 계량기 숫자를 효과적으로 잘 분할함을 확인하였다.

고해상도 위성영상의 객체기반 분석을 위한 영상 분할 기법 개발 및 평가 (Development and Evaluation of Image Segmentation Technique for Object-based Analysis of High Resolution Satellite Image)

  • 변영기;김용일
    • 한국측량학회지
    • /
    • 제28권6호
    • /
    • pp.627-636
    • /
    • 2010
  • 영상분할은 관심대상이 되는 물체의 영역을 추출하기 위한 객체기반 영상분류의 전처리과정으로서 원격 탐사 영상분석에서 그 중요성 날로 커지고 있다. 본 연구에서는 고해상도 위성영상의 분광 및 공간정보를 반영할 수 있는 새로운 분할방법을 제안한다. 이를 위해 우선 다중분광 에지정보의 지역적 변이특성을 이용하여 영상에서 자동으로 초기시드 점을 추출하였다. 추출된 시드 점과 이웃하는 점들과의 유사성을 기반으로 영역 확장의 우선순위를 결정하는 MSRG가법을 이용하여 영상분할을 수행하였다. 제안된 기법의 효율성을 평가하기 위해 기존에 위성영상분할에 많이 사용된 유역분할법과 영역성장기법과의 시각적/정량적 비교평가를 수행하였다. 정량적 비교평가 방법으로는 무감독 영상분할 평가 측정치와 동일한 조건하에서 수행된 객체기반 분류 정확도를 이용하였다. 실험 결과 제안한 기법은 고해상도 위성영상의 객체기반분석에 유용하게 적용될 수 있으리라 판단된다.

음소 음향학적 변화 정보를 이용한 한국어 음성신호의 자동 음소 분할 (Automatic Phonetic Segmentation of Korean Speech Signal Using Phonetic-acoustic Transition Information)

  • 박창목;왕지남
    • 한국음향학회지
    • /
    • 제20권8호
    • /
    • pp.24-30
    • /
    • 2001
  • 본 논문에서는 발음표기가 주어진 상황에서 음성 신호의 자동 음소 분할에 관한 것이며 음소의 경계를 음소 음향학적인 변화특성에 따라 3가지 형태로 분류하여 각각에 적합한 분할 알고리즘을 개발하였다. 형태 1은 묵음·유성음·무성음간의 분할이며 히스토그램분석으로 구한 문턱 값으로 초기 분할 후, 웨이블릿 계수의 SVF (Spectral Variation Function)를 이용하여 분할하였다. 형태 2는 연속적인 모음의 분할이며 각 모음변화특성을 템플릿으로 구성하여 분할에 활용하였다. 형태 3은 모음과 유성자음 혹은 유성화 자음의 분할이며 특성주파수대역의 진폭변화를 이용하여 후보구간을 정한 후, 캡스트럼 계수의 SVF를 이용하여 최종적인 분할을 수행하였다. 본 실험에서는 분할 성능을 테스트하기 위하여 한국어 PBWSpeech DB에서 342개의 단어를 자동으로 분할한 후, 수작업으로 분할한 결과와 비교하였다. 전체적인 자동 분할 성능은 20 msec내에서 81.5%의 분할성능을 보였다.

  • PDF