• 제목/요약/키워드: automatic machine translation

검색결과 38건 처리시간 0.023초

기계번역 사후교정(Automatic Post Editing) 연구 (Automatic Post Editing Research)

  • 박찬준;임희석
    • 한국융합학회논문지
    • /
    • 제11권5호
    • /
    • pp.1-8
    • /
    • 2020
  • 기계번역이란 소스문장(Source Sentence)을 타겟문장(Target Sentence)으로 컴퓨터가 번역하는 시스템을 의미한다. 기계번역에는 다양한 하위분야가 존재하며 APE(Automatic Post Editing)이란 기계번역 시스템의 결과물을 교정하여 더 나은 번역문을 만들어내는 기계번역의 하위분야이다. 즉 기계번역 시스템이 생성한 번역문에 포함되어 있는 오류를 수정하여 교정문을 만드는 과정을 의미한다. 기계번역 모델을 변경하는 것이 아닌 기계번역 시스템의 결과 문장을 교정하여 번역품질을 높이는 연구분야이다. 2015년부터 WMT 공동 캠페인 과제로 선정되었으며 성능 평가는 TER(Translation Error Rate)을 이용한다. 이로 인해 최근 APE에 모델에 대한 다양한 연구들이 발표되고 있으며 이에 본 논문은 APE 분야의 최신 동향에 대해서 다루게 된다.

Classification-Based Approach for Hybridizing Statistical and Rule-Based Machine Translation

  • Park, Eun-Jin;Kwon, Oh-Woog;Kim, Kangil;Kim, Young-Kil
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.541-550
    • /
    • 2015
  • In this paper, we propose a classification-based approach for hybridizing statistical machine translation and rulebased machine translation. Both the training dataset used in the learning of our proposed classifier and our feature extraction method affect the hybridization quality. To create one such training dataset, a previous approach used auto-evaluation metrics to determine from a set of component machine translation (MT) systems which gave the more accurate translation (by a comparative method). Once this had been determined, the most accurate translation was then labelled in such a way so as to indicate the MT system from which it came. In this previous approach, when the metric evaluation scores were low, there existed a high level of uncertainty as to which of the component MT systems was actually producing the better translation. To relax such uncertainty or error in classification, we propose an alternative approach to such labeling; that is, a cut-off method. In our experiments, using the aforementioned cut-off method in our proposed classifier, we managed to achieve a translation accuracy of 81.5% - a 5.0% improvement over existing methods.

도메인 특화 방법에 의한 영한 특허 자동 번역 시스템의 구축 (Construction of English-Korean Automatic Translation System for Patent Documents Based on Domain Customizing Method)

  • 최승권;권오욱;이기영;노윤형;박상규
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권2호
    • /
    • pp.95-103
    • /
    • 2007
  • 본 논문은 웹과 같은 일반적인 도메인의 영한 자동 번역기를 특정 도메인으로 특화하는 방법에 의해 구축된 영한 특허 자동번역 시스템을 기술하는 것을 목표로 한다. 특정 도메인으로서의 특허 자동번역기를 위한 특화 방법은 다음과 같은 단계로 이루어진다: 1) 대용량 특허 문서의 수집 및 언어학적 특성 분석, 2) 전문용어 추출 및 대역어 구축, 3) 기보유한 용어의 대역어 특화, 4) 특허 고유의 번역 패턴추출 및 구축, 5) 언어학적 특성 분석에 따른 기보유 번역 엔진 모듈의 특화 및 개선, 6) 특화된 번역 지식 및 번역 엔진 모듈에 따른 번역률 평가. 이와 같은 특화 절차에 따른 특허 영한 자동 번역기는 특허 전문번역가의 평가에 의해 전분야 평균 81.03%의 번역률을 내었으며, 분야별로는 기계(80.54%), 전기전자 (81.58%), 화학일반(79.92%), 의료위생(80.79%), 컴퓨터(82.29%)의 성능을 보였으며 계속 개선 중에 있다.

Linguistic Processing in Automatic Interpretation System between English-Korean Language Pair

  • Choi, K.S.;Lee, S.M.;Lee, Y.J.
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.1076-1081
    • /
    • 1994
  • This paper presents the linguistic processing for the Automatic Interpretation system between English/Korean language pair. We introduce two machine translation systems, each for English-to-Korean and Korean-to-English, describe the system configuration and several characteristics, and discuss the translation evaluation results.

  • PDF

최신 기계번역 사후 교정 연구 (Recent Automatic Post Editing Research)

  • 문현석;박찬준;어수경;서재형;임희석
    • 디지털융복합연구
    • /
    • 제19권7호
    • /
    • pp.199-208
    • /
    • 2021
  • 기계번역 사후교정이란, 기계번역 문장에 포함된 오류를 자동으로 교정하기 위해 제안된 연구 분야이다. 이는 번역 시스템과 관계없이 번역문의 품질을 높이는 오류 교정 모델을 생성하는 목적을 가진 연구로, 훈련을 위해 소스문장, 번역문, 그리고 이를 사람이 직접 교정한 문장이 활용된다. 특히, 최신 기계번역 사후교정 연구에서는 사후교정 데이터를 통한 학습을 진행하기 이전에, 사전학습된 다국어 언어모델을 활용하는 방법이 적용되고 있다. 이에 본 논문은 최신 연구들에서 활용되고 있는 다국어 사전학습 언어모델들과 함께, 해당 모델을 도입한 각 연구에서의 구체적인 적용방법을 소개한다. 나아가 이를 기반으로, 번역 모델과 mBART모델을 활용하는 향후 연구 방향을 제안한다.

Discriminative Models for Automatic Acquisition of Translation Equivalences

  • Zhang, Chun-Xiang;Li, Sheng;Zhao, Tie-Jun
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.99-103
    • /
    • 2007
  • Translation equivalence is very important for bilingual lexicography, machine translation system and cross-lingual information retrieval. Extraction of equivalences from bilingual sentence pairs belongs to data mining problem. In this paper, discriminative learning methods are employed to filter translation equivalences. Discriminative features including translation literality, phrase alignment probability, and phrase length ratio are used to evaluate equivalences. 1000 equivalences randomly selected are filtered and then evaluated. Experimental results indicate that its precision is 87.8% and recall is 89.8% for support vector machine.

전이학습 기반 기계번역 사후교정 모델 검증 (The Verification of the Transfer Learning-based Automatic Post Editing Model)

  • 문현석;박찬준;어수경;서재형;임희석
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.27-35
    • /
    • 2021
  • 기계번역 사후교정 (Automatic Post Editing, APE)이란 번역 시스템을 통해 생성한 번역문을 교정하는 연구 분야로, 영어-독일어와 같이 학습데이터가 풍부한 언어쌍을 중심으로 연구가 진행되고 있다. 최근 APE 연구는 전이학습 기반 연구가 주로 이루어지는데, 일반적으로 self supervised learning을 통해 생성된 사전학습 언어모델 혹은 번역모델이 주로 활용된다. 기존 연구에서는 번역모델에 전이학습 시킨 APE모델이 뛰어난 성과를 보였으나, 대용량 언어쌍에 대해서만 이루어진 해당 연구를 저 자원 언어쌍에 곧바로 적용하기는 어렵다. 이에 본 연구에서는 언어 혹은 번역모델의 두 가지 전이학습 전략을 대표적인 저 자원 언어쌍인 한국어-영어 APE 연구에 적용하여 심층적인 모델 검증을 진행하였다. 실험결과 저 자원 언어쌍에서도 APE 학습 이전에 번역을 한차례 학습시키는 것이 유의미하게 APE 성능을 향상시킨다는 것을 확인할 수 있었다.

Spoken-to-written text conversion for enhancement of Korean-English readability and machine translation

  • HyunJung Choi;Muyeol Choi;Seonhui Kim;Yohan Lim;Minkyu Lee;Seung Yun;Donghyun Kim;Sang Hun Kim
    • ETRI Journal
    • /
    • 제46권1호
    • /
    • pp.127-136
    • /
    • 2024
  • The Korean language has written (formal) and spoken (phonetic) forms that differ in their application, which can lead to confusion, especially when dealing with numbers and embedded Western words and phrases. This fact makes it difficult to automate Korean speech recognition models due to the need for a complete transcription training dataset. Because such datasets are frequently constructed using broadcast audio and their accompanying transcriptions, they do not follow a discrete rule-based matching pattern. Furthermore, these mismatches are exacerbated over time due to changing tacit policies. To mitigate this problem, we introduce a data-driven Korean spoken-to-written transcription conversion technique that enhances the automatic conversion of numbers and Western phrases to improve automatic translation model performance.

SciBabel: a system for crowd-sourced validation of automatic translations of scientific texts

  • Soares, Felipe;Rebechi, Rozane;Stevenson, Mark
    • Genomics & Informatics
    • /
    • 제18권2호
    • /
    • pp.21.1-21.7
    • /
    • 2020
  • Scientific research is mostly published in English, regardless of the researcher's nationality. However, this growing practice impairs or hinders the comprehension of professionals who depend on the results of these studies to provide adequate care for their patients. We suggest that machine translation (MT) can be used as a way of providing useful translation for biomedical articles, even though the translation itself may not be fluent. To tackle possible mistranslation that can harm a patient, we resort to crowd-sourced validation of translations. We developed a prototype of MT validation and edition, where users can vote for that translation as valid, or suggest modifications (i.e., post-editing the MT). A glossary match system is also included, aiming at terminology consistency.

An Automatic Tagging System and Environments for Construction of Korean Text Database

  • Lee, Woon-Jae;Choi, Key-Sun;Lim, Yun-Ja;Lee, Yong-Ju;Kwon, Oh-Woog;Kim, Hiong-Geun;Park, Young-Chan
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.1082-1087
    • /
    • 1994
  • A set of text database is indispensable to the probabilistic models for speech recognition, linguistic model, and machine translation. We introduce an environment to canstruct text databases : an automatic tagging system and a set of tools for lexical knowledge acquisition, which provides the facilities of automatic part of speech recognition and guessing.

  • PDF