• Title/Summary/Keyword: automatic machine translation

Search Result 38, Processing Time 0.02 seconds

Automatic Post Editing Research (기계번역 사후교정(Automatic Post Editing) 연구)

  • Park, Chan-Jun;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • Machine translation refers to a system where a computer translates a source sentence into a target sentence. There are various subfields of machine translation. APE (Automatic Post Editing) is a subfield of machine translation that produces better translations by editing the output of machine translation systems. In other words, it means the process of correcting errors included in the translations generated by the machine translation system to make proofreading. Rather than changing the machine translation model, this is a research field to improve the translation quality by correcting the result sentence of the machine translation system. Since 2015, APE has been selected for the WMT Shaed Task. and the performance evaluation uses TER (Translation Error Rate). Due to this, various studies on the APE model have been published recently, and this paper deals with the latest research trends in the field of APE.

Classification-Based Approach for Hybridizing Statistical and Rule-Based Machine Translation

  • Park, Eun-Jin;Kwon, Oh-Woog;Kim, Kangil;Kim, Young-Kil
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.541-550
    • /
    • 2015
  • In this paper, we propose a classification-based approach for hybridizing statistical machine translation and rulebased machine translation. Both the training dataset used in the learning of our proposed classifier and our feature extraction method affect the hybridization quality. To create one such training dataset, a previous approach used auto-evaluation metrics to determine from a set of component machine translation (MT) systems which gave the more accurate translation (by a comparative method). Once this had been determined, the most accurate translation was then labelled in such a way so as to indicate the MT system from which it came. In this previous approach, when the metric evaluation scores were low, there existed a high level of uncertainty as to which of the component MT systems was actually producing the better translation. To relax such uncertainty or error in classification, we propose an alternative approach to such labeling; that is, a cut-off method. In our experiments, using the aforementioned cut-off method in our proposed classifier, we managed to achieve a translation accuracy of 81.5% - a 5.0% improvement over existing methods.

Construction of English-Korean Automatic Translation System for Patent Documents Based on Domain Customizing Method (도메인 특화 방법에 의한 영한 특허 자동 번역 시스템의 구축)

  • Choi, Sung-Kwon;Kwon, Oh-Woog;Lee, Ki-Young;Roh, Yoon-Hyung;Park, Sang-Kyu
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.2
    • /
    • pp.95-103
    • /
    • 2007
  • This paper describes an English-to-Korean automatic translation system for patent documents which is constructed by a method customizing from a general domain to a specific domain. The customizing method consists of following steps: 1) linguistically studying about characteristics of patent documents, 2) extracting unknown words from large patent documents and terminologically constructing, 3) customizing the target language words of existing terms, 4) extracting and constructing patent translation patterns peculiar to patent documents, 5) customizing existing translation engine modules according to linguistic study about characteristics of patent documents, 6) evaluation of automatic translation results. The English-to-Korean patent machine translation system implemented by these customization steps shows a translation accuracy of 81.03% and is improving.

Linguistic Processing in Automatic Interpretation System between English-Korean Language Pair

  • Choi, K.S.;Lee, S.M.;Lee, Y.J.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.1076-1081
    • /
    • 1994
  • This paper presents the linguistic processing for the Automatic Interpretation system between English/Korean language pair. We introduce two machine translation systems, each for English-to-Korean and Korean-to-English, describe the system configuration and several characteristics, and discuss the translation evaluation results.

  • PDF

Recent Automatic Post Editing Research (최신 기계번역 사후 교정 연구)

  • Moon, Hyeonseok;Park, Chanjun;Eo, Sugyeong;Seo, Jaehyung;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.199-208
    • /
    • 2021
  • Automatic Post Editing(APE) is the study that automatically correcting errors included in the machine translated sentences. The goal of APE task is to generate error correcting models that improve translation quality, regardless of the translation system. For training these models, source sentence, machine translation, and post edit, which is manually edited by human translator, are utilized. Especially in the recent APE research, multilingual pretrained language models are being adopted, prior to the training by APE data. This study deals with multilingual pretrained language models adopted to the latest APE researches, and the specific application method for each APE study. Furthermore, based on the current research trend, we propose future research directions utilizing translation model or mBART model.

Discriminative Models for Automatic Acquisition of Translation Equivalences

  • Zhang, Chun-Xiang;Li, Sheng;Zhao, Tie-Jun
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.99-103
    • /
    • 2007
  • Translation equivalence is very important for bilingual lexicography, machine translation system and cross-lingual information retrieval. Extraction of equivalences from bilingual sentence pairs belongs to data mining problem. In this paper, discriminative learning methods are employed to filter translation equivalences. Discriminative features including translation literality, phrase alignment probability, and phrase length ratio are used to evaluate equivalences. 1000 equivalences randomly selected are filtered and then evaluated. Experimental results indicate that its precision is 87.8% and recall is 89.8% for support vector machine.

The Verification of the Transfer Learning-based Automatic Post Editing Model (전이학습 기반 기계번역 사후교정 모델 검증)

  • Moon, Hyeonseok;Park, Chanjun;Eo, Sugyeong;Seo, Jaehyung;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.27-35
    • /
    • 2021
  • Automatic post editing is a research field that aims to automatically correct errors in machine translation results. This research is mainly being focus on high resource language pairs, such as English-German. Recent APE studies are mainly adopting transfer learning based research, where pre-training language models, or translation models generated through self-supervised learning methodologies are utilized. While translation based APE model shows superior performance in recent researches, as such researches are conducted on the high resource languages, the same perspective cannot be directly applied to the low resource languages. In this work, we apply two transfer learning strategies to Korean-English APE studies and show that transfer learning with translation model can significantly improves APE performance.

Spoken-to-written text conversion for enhancement of Korean-English readability and machine translation

  • HyunJung Choi;Muyeol Choi;Seonhui Kim;Yohan Lim;Minkyu Lee;Seung Yun;Donghyun Kim;Sang Hun Kim
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.127-136
    • /
    • 2024
  • The Korean language has written (formal) and spoken (phonetic) forms that differ in their application, which can lead to confusion, especially when dealing with numbers and embedded Western words and phrases. This fact makes it difficult to automate Korean speech recognition models due to the need for a complete transcription training dataset. Because such datasets are frequently constructed using broadcast audio and their accompanying transcriptions, they do not follow a discrete rule-based matching pattern. Furthermore, these mismatches are exacerbated over time due to changing tacit policies. To mitigate this problem, we introduce a data-driven Korean spoken-to-written transcription conversion technique that enhances the automatic conversion of numbers and Western phrases to improve automatic translation model performance.

SciBabel: a system for crowd-sourced validation of automatic translations of scientific texts

  • Soares, Felipe;Rebechi, Rozane;Stevenson, Mark
    • Genomics & Informatics
    • /
    • v.18 no.2
    • /
    • pp.21.1-21.7
    • /
    • 2020
  • Scientific research is mostly published in English, regardless of the researcher's nationality. However, this growing practice impairs or hinders the comprehension of professionals who depend on the results of these studies to provide adequate care for their patients. We suggest that machine translation (MT) can be used as a way of providing useful translation for biomedical articles, even though the translation itself may not be fluent. To tackle possible mistranslation that can harm a patient, we resort to crowd-sourced validation of translations. We developed a prototype of MT validation and edition, where users can vote for that translation as valid, or suggest modifications (i.e., post-editing the MT). A glossary match system is also included, aiming at terminology consistency.

An Automatic Tagging System and Environments for Construction of Korean Text Database

  • Lee, Woon-Jae;Choi, Key-Sun;Lim, Yun-Ja;Lee, Yong-Ju;Kwon, Oh-Woog;Kim, Hiong-Geun;Park, Young-Chan
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.1082-1087
    • /
    • 1994
  • A set of text database is indispensable to the probabilistic models for speech recognition, linguistic model, and machine translation. We introduce an environment to canstruct text databases : an automatic tagging system and a set of tools for lexical knowledge acquisition, which provides the facilities of automatic part of speech recognition and guessing.

  • PDF