• Title/Summary/Keyword: automatic level controller

Search Result 66, Processing Time 0.022 seconds

Experimental investigation of Scalability of DDR DRAM packages

  • Crisp, R.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.73-76
    • /
    • 2010
  • A two-facet approach was used to investigate the parametric performance of functional high-speed DDR3 (Double Data Rate) DRAM (Dynamic Random Access Memory) die placed in different types of BGA (Ball Grid Array) packages: wire-bonded BGA (FBGA, Fine Ball Grid Array), flip-chip (FCBGA) and lead-bonded $microBGA^{(R)}$. In the first section, packaged live DDR3 die were tested using automatic test equipment using high-resolution shmoo plots. It was found that the best timing and voltage margin was obtained using the lead-bonded microBGA, followed by the wire-bonded FBGA with the FCBGA exhibiting the worst performance of the three types tested. In particular the flip-chip packaged devices exhibited reduced operating voltage margin. In the second part of this work a test system was designed and constructed to mimic the electrical environment of the data bus in a PC's CPU-Memory subsystem that used a single DIMM (Dual In Line Memory Module) socket in point-to-point and point-to-two-point configurations. The emulation system was used to examine signal integrity for system-level operation at speeds in excess of 6 Gb/pin/sec in order to assess the frequency extensibility of the signal-carrying path of the microBGA considered for future high-speed DRAM packaging. The analyzed signal path was driven from either end of the data bus by a GaAs laser driver capable of operation beyond 10 GHz. Eye diagrams were measured using a high speed sampling oscilloscope with a pulse generator providing a pseudo-random bit sequence stimulus for the laser drivers. The memory controller was emulated using a circuit implemented on a BGA interposer employing the laser driver while the active DRAM was modeled using the same type of laser driver mounted to the DIMM module. A custom silicon loading die was designed and fabricated and placed into the microBGA packages that were attached to an instrumented DIMM module. It was found that 6.6 Gb/sec/pin operation appears feasible in both point to point and point to two point configurations when the input capacitance is limited to 2pF.

Indoor Surveillance Camera based Human Centric Lighting Control for Smart Building Lighting Management

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Lee, Min Woo;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.207-212
    • /
    • 2020
  • The human centric lighting (HCL) control is a major focus point of the smart lighting system design to provide energy efficient and people mood rhythmic motivation lighting in smart buildings. This paper proposes the HCL control using indoor surveillance camera to improve the human motivation and well-beings in the indoor environments like residential and industrial buildings. In this proposed approach, the indoor surveillance camera video streams are used to predict the day lights and occupancy, occupancy specific emotional features predictions using the advanced computer vision techniques, and this human centric features are transmitted to the smart building light management system. The smart building light management system connected with internet of things (IoT) featured lighting devices and controls the light illumination of the objective human specific lighting devices. The proposed concept experimental model implemented using RGB LED lighting devices connected with IoT features open-source controller in the network along with networked video surveillance solution. The experiment results are verified with custom made automatic lighting control demon application integrated with OpenCV framework based computer vision methods to predict the human centric features and based on the estimated features the lighting illumination level and colors are controlled automatically. The experiment results received from the demon system are analyzed and used for the real-time development of a lighting system control strategy.

Control of dissolved Oxygen Concentration and Specific Growth Rate in Fed-batch Fermentation (유가식 생물반응기에서의 용존산소농도 및 비성장속도의 제어)

  • Kim, Chang-Gyeom;Lee, Tae-Ho;Lee, Seung-Cheol;Chang, Yong-Keun;Chang, Ho-Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.354-365
    • /
    • 1993
  • A novel control method with automatic tuning of PID controller parameters has been developed for efficient regulation of dissolved oxygen concentration in fed-batch fermentations of Escherichia coli. Agitation speed and oxygen partial pressure in the inlet gas stream were chosen to be the manipulated variables. A heuristic reasoning allowed improved tuning decisions from the supervision of control performance indices and it coule obviate the needs for process assumptions or disturbance patterns. The control input consisted of feedback and feedforword parts. The feedback part was determined by PID control and the feedforward part is determined from the feed rate. The proportional gain was updated on-line by a set of heuristics rules based on the supervision of three performance indices. These indices were output error covariance, the average value of output error, and input covariance, which were calculated on-line using a moving window. The integral and derivative time constants were determined from the period of output response. The specific growth rate was maintained at a low level to avoid acetic acid accumulation and thus to achieve a high cell density. The specific growthe rate was estimated from the carbon dioxide evolution rate. In fed-batch fermentation, the simutaneous control of dissolved oxygen concentration (at 0.2; fraction of saturated value) and specific growth rate (at 0.25$hr^{-1}$) was satisfactory for the entire culture period in spite of the changes in the feed rate and the switching of control input.

  • PDF

Development of a Control Algorithm for Automatic Ventilation (환기창 자동제어용 제어 알고리즘 개발)

  • 박규식;이기명
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 1997
  • Environmental control operations have been considerably contributed to the reduction of labor cost in both plastic film and glass greenhouses since government supported projects were begun. However, some problems are still remaining on the optimal environmental control and excessive operation due to an inflexible software regulating ventilation gear - reducers. The unadjustable software caused the damage of ventilation system, resulting in heat stresses of crops. This study was performed to develop a ventilation software controlling the vent opening level, opening sequence, based on the wind direction, and control interval according to the difference between ambient and set- up temperatures. The software included a beeper system alarming urgent cases, while a manager was remote from the greenhouse. A compatible hardware with the software was also developed by using a low-cost diffused DSP controller.

  • PDF

An Experimental Study on the Analysis of the Interventricular Pressure Waveform in the Moving-Actuator type Total Artificial Heart (이동작동기식 완전 이식형 인공 심장의 심실간 공간 압력 파형 해석에 관한 실험적 연구)

  • 조영호;최원우
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.25-36
    • /
    • 1997
  • To regulate cardiac output of the Total Artificial Heart(TAH) physiologically, the hemodynamic information must be toed back to the controller. So far, our group has developed an automatic cardiac output control algorithm using the motor current waveform, It is, however difficult to detect the preload level such as a filling status of ventricular inflow and the variation of atrial pressures within normal physiologic range(0-15 mmHg) by analyzing the motor current which simultaneously reflects the afterload effect. On the other hin4 the interventricular volume pressure(IVP) which is not influenced by arterload but by preload is a good information source for the estimation of preload states. In order to find the relationship between preload and IVP waveform, we set up the artificial heart system on the Donovan type mock circulatory system and measured the IVP waveform, right and left atrial pressures, inflow and outflow waveforms and the signals represented the information of moving actuator's position. We shows the feasibility of estimating the hemodynamic changes of inflow by using IVP waveform. fife found that the negative peak value of IVP waveform is linearly related to atrial pressures. And we also found that we could use the time to reach the negative peak in IVP waveform, the time to open outflow valve, the area enclosed IVP waveform as unfu parameters to estimate blood filling volume of diastole ventricle. The suggested method has advantages of avoiding thrombogenesis, bacterial niche formation and increasing longterm reliability of sensor by avoiding direct contact to blood.

  • PDF

A Fully Digital Automatic Gain Control System with Wide Dynamic Range Power Detectors for DVB-S2 Application (넓은 동적 영역의 파워 검출기를 이용한 DVB-S2용 디지털 자동 이득 제어 시스템)

  • Pu, Young-Gun;Park, Joon-Sung;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.58-67
    • /
    • 2009
  • This paper presents a fully digital gain control system with a new high bandwidth and wide dynamic range power detector for DVB-S2 application. Because the peak-to-average power ratio (PAPR) of DVB-S2 system is so high and the settling time requirement is so stringent, the conventional closed-loop analog gain control scheme cannot be used. The digital gain control is necessary for the robust gain control and the direct digital interface with the baseband modem. Also, it has several advantages over the analog gain control in terms of the settling time and insensitivity to the process, voltage and temperature variation. In order to have a wide gain range with fine step resolution, a new AGC system is proposed. The system is composed of high-bandwidth digital VGAs, wide dynamic range power detectors with RMS detector, low power SAR type ADC, and a digital gain controller. To reduce the power consumption and chip area, only one SAR type ADC is used, and its input is time-interleaved based on four power detectors. Simulation and measurement results show that the new AGC system converges with gain error less than 0.25 dB to the desired level within $10{\mu}s$. It is implemented in a $0.18{\mu}m$ CMOS process. The measurement results of the proposed IF AGC system exhibit 80-dB gain range with 0.25-dB resolution, 8 nV/$\sqrt{Hz}$ input referred noise, and 5-dBm $IIP_3$ at 60-mW power consumption. The power detector shows the 35dB dynamic range for 100 MHz input.