• Title/Summary/Keyword: automatic grading

Search Result 79, Processing Time 0.038 seconds

Development of On-line Grading System Using Two Surface Images of Dried Oak Mushrooms (양면영상을 이용한 온라인 검표고 등급판정 시스템 개발)

  • Hwang, H.;Lee, C. H.;Kim, S. C.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.153-158
    • /
    • 1999
  • As a basic research for the development of the automatic grading and sorting system for dried oak mushrooms, the device to acquire both cap and gill side images of mushroom has been developed and neural network based side recognition and quality grading has been proposed via inputting both side images. 20 quality grades have been selected considering the requirement of grade classifications imposed by the mushroom company. Developed DC motor driven‘V’type reversing device for the image acquisition of both side images of mushroom showed more than 95% success. Most error was caused by very small size mushrooms with a radius of around 1cm. However, it required a further research to reduce the reversing time. Grading and side recognition were performed via inputting normalized size factors and average gray levels of $8{\times}8$ grids converted from the raw images of both surfaces to the multi-layer back propagation(BP) network. Accuracy of the grading showed about 88.5% and the total grading time including reversing operation was around 2 seconds.

  • PDF

Automatic Recognition of the Front/Back Sides and Stalk States for Mushrooms(Lentinus Edodes L.) (버섯 전후면과 꼭지부 상태의 자동 인식)

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.2
    • /
    • pp.124-137
    • /
    • 1994
  • Visual features of a mushroom(Lentinus Edodes, L.) are critical in grading and sorting as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. To realize the automatic handling and grading of mushrooms in real time, the computer vision system should be utilized and the efficient and robust processing of the camera captured visual information be provided. Since visual features of a mushroom are distributed over the front and back sides, recognizing sides and states of the stalk including the stalk orientation from the captured image is a prime process in the automatic task processing. In this paper, the efficient and robust recognition process identifying the front and back side and the state of the stalk was developed and its performance was compared with other recognition trials. First, recognition was tried based on the rule set up with some experimental heuristics using the quantitative features such as geometry and texture extracted from the segmented mushroom image. And the neural net based learning recognition was done without extracting quantitative features. For network inputs the segmented binary image obtained from the combined type automatic thresholding was tested first. And then the gray valued raw camera image was directly utilized. The state of the stalk seriously affects the measured size of the mushroom cap. When its effect is serious, the stalk should be excluded in mushroom cap sizing. In this paper, the stalk removal process followed by the boundary regeneration of the cap image was also presented. The neural net based gray valued raw image processing showed the successful results for our recognition task. The developed technology through this research may open the new way of the quality inspection and sorting especially for the agricultural products whose visual features are fuzzy and not uniquely defined.

  • PDF

Automatic Decision-Making on the Grade of 6-Year-Old Fresh Ginseng (Panax ginseng C.A. Meyer) by an Image Analyzer 1. Shape and Weight Analyses according to the Grade of Fresh Ginseng (Image Analyzer를 이용한 수삼등급의 자동판정 I. 수삼등급 별 체형과 중량분석)

  • Kang, Je-Yong;Lee, Myong-Gu;Kim, Yo-Tae
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.65-71
    • /
    • 1996
  • This study was undertaken to evaluate the automatic decision-making on the grading of 6-year-old fresh ginseng (Panax ginseng C.A. Meyer) by an image analyzer. The best input method for the 6-year-old fresh ginseng was under condition of a low resolution (128u 128 pixel) and illumination direction from bottom to up (light box). It was possible to identify the main root, lateral root, and rhizome of fresh ginseng by application of OPEN process in a function of an image analyzer. Finally, we developed the grade decision-making programs, GinP-1. The fitness rates for the fresh ginseng standards which were classified by experts were 94.6, 80.6, 81.5, and 100.0% for 1st, 2nd, 3rd, and 4th grade of fresh ginseng, respectively, and the total time of decision-making was about 4.3 seconds per one root. The decision-making time was reduced to 0.8 seconds per one root by enhancemeat of the Image analyzer, which was tested by the technical company of the image analyzer,'Carl Zeiss (Germany). As a result of this study, the automatic decision-making on the grade of fresh gin send by image analyzer seems to have high possibility.

  • PDF

Development of Automatic Sorting System for Green pepper Using Machine Vision (기계시각에 의한 풋고추 자동 선별시스템 개발)

  • Cho, N.H.;Chang, D.I.;Lee, S.H.;Hwang, H.;Lee, Y.H.;Park, J.R.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.514-523
    • /
    • 2006
  • Production of green pepper has been increased due to customer's preference and a projected ten-year boom in the industry in Korea. This study was carried out to develop an automatic grading and sorting system for green pepper using machine vision. The system consisted of a feeding mechanism, segregation section, an image inspection chamber, image processing section, system control section, grading section, and discharging section. Green peppers were separated and transported using a bowl feeder with a vibrator and a belt conveyor, respectively. Images were taken using color CCD cameras and a color frame grabber. An on-line grading algorithm was developed using Visual C/C++. The green peppers could be graded into four classes by activating air nozzles located at the discharging section. Length and curvature of each green pepper were measured while removing a stem of it. The first derivative of thickness profile was used to remove a stem area of segmented image of the pepper. While pepper is moving at 0.45 m/s, the accuracy of grading sorting for large, medium and small pepper are 86.0%, 81.3% and 90.6% respectively. Sorting performance was 121 kg/hour, and about five times better than manual sorting. The developed system was also economically feasible to grade and sort green peppers showing the cost about 40% lower than that of manual operations.

Evaluation of Volumetric Texture Features for Computerized Cell Nuclei Grading

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1635-1648
    • /
    • 2008
  • The extraction of important features in cancer cell image analysis is a key process in grading renal cell carcinoma. In this study, we applied three-dimensional (3D) texture feature extraction methods to cell nuclei images and evaluated the validity of them for computerized cell nuclei grading. Individual images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D gray-level co-occurrence matrices (3D GLCM) and 3D run length matrices (3D GLRLM). Finally, to demonstrate the suitability of 3D texture features for grading, we performed a discriminant analysis. In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and 3D morphological features improved the accuracy to 82.19%. As a comparative study, we also performed a stepwise feature selection. Using the 4 optimized features, we could obtain more improved accuracy of 84.32%. Three dimensional texture features have potential for use as fundamental elements in developing a new nuclear grading system with accurate diagnosis and predicting prognosis.

  • PDF

Research on Subjective-type Grading System Using Syntactic-Semantic Tree Comparator (구문의미트리 비교기를 이용한 주관식 문항 채점 시스템에 대한 연구)

  • Kang, WonSeog
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.6
    • /
    • pp.83-92
    • /
    • 2018
  • The subjective question is appropriate for evaluation of deep thinking, but it is not easy to score. Since, regardless of same scoring criterion, the graders are able to produce different scores, we need the objective automatic evaluation system. However, the system has the problem of Korean analysis and comparison. This paper suggests the Korean syntactic analysis and subjective grading system using the syntactic-semantic tree comparator. This system is the hybrid grading system of word based and syntactic-semantic tree based grading. This system grades the answers on the subjective question using the syntactic-semantic comparator. This proposed system has the good result. This system will be utilized in Korean syntactic-semantic analysis, subjective question grading, and document classification.

Development of an Automatic Sweet Potato Sorting System Using Image Processing (영상처리를 이용한 고구마 자동 선별시스템 개발)

  • Yang G. M.;Choi K. H.;Cho N. H.;Park J. R.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.172-178
    • /
    • 2005
  • Grading and sorting an indeterminate form of agricultural products such as sweet potatoes and potatoes are a labor intensive job because its shape and size are various and complicate. It costs a great deal to sort sweet potato in an indeterminate forms. There is a great need for an automatic grader fur the potatoes. Machine vision is the promising solution for this purpose. The optical indices for qualifying weight and appearance quality such as shape, color, defects, etc. were obtained and an on-line sorting system was developed. The results are summarized as follows. Sorting system combined with an on-line inspection device was composed of 5 sections, human inspection, feeding, illumination chamber, image processing & control, and grading & discharging. The algorithms to compute geometrical parameters related to the external guality were developed and implemented for sorting the deformed sweet potatoes. Grading accuracy by image processing was $96.4\%$ and the processing capacity was 10,800 pieces per hour.