• Title/Summary/Keyword: automatic crane

Search Result 86, Processing Time 0.031 seconds

A Study on Gantry Control using Neural Network Two Degree of PID Controller (신경회로망 2 자유도 PID 제어기를 이용한 갠트리 크레인제어에 관한 연구)

  • 최성욱;손주한;이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.159-167
    • /
    • 2000
  • During the operation of crane system in the container yard, it is necessary to control the crane trolley position so that the swing of the hanging container is minimized. Recently an automatic control system with high speed and rapid transportation is required. Therefore, we designed a controller to control the crane system with disturbances and weight change. In this paper, we present the neural network two degree of freedom PID controller to control the swing motion and trolley position. Then we executed the computer simulation to verify the performance of the proposed controller and compared the performance of the neural network PID controller with our proposed controller in terms of the rope swing and the precision of position control. Computer simulation results show that the proposed controller has better performances than neural network PID with disturbances.

  • PDF

Design of a Container Crane Controller Using the Fuzzy Control Technique (퍼지제어 기법을 이용한 컨테이너 크레인의 제어기 설계)

  • 소명옥;유희한;박재식;남택근;최재준;이병찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.759-766
    • /
    • 2003
  • The amount of container freight continuously has been increased. and the low efficiency of container crane causes jamming frequently in transportation and cargo handling at port. The conventional control techniques based on a mathematical model are not well suited for dealing with ill-defined and uncertain systems. Recently. Fuzzy control has been successfully applied to a wide variety of practical problems as robots. automatic train operation system. etc. In this paper. a fuzzy controller for container crane is proposed to accomplish a design of improved control system for minimizing the swing motion at destination. In this scheme a mathematical model for the system is obtained in state space form. Finally. to exhibit the tracking performance and robustness of the proposed controller. computer simulations were carried out with various references, parameter variations and disturbances.

The Development of the Slope Monitoring System(SMS) of the Tower Crane (타워크레인의 기울어짐 측정 시스템 개발)

  • Shin, Woon-Chul;Hong, Yong-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.60-64
    • /
    • 2010
  • The purpose of this study if to prevent dangerous accident of the overthrow of the tower crane in summer's hurricane. We develop the SMS in order to give automatic alarm system to operator within the dangerous range and to give a information of the exactly slope in the real time. The slope value of the tower crane is compose of direction, pitch by the front and rear, roll by the right and left and synthesis by the its pitch and roll. Especially, the synthesis eliminate the effect of the wall tie or wire bracing. So, this value should correctly indicate the actual slope. In this study, more applying field test should be applied with the SMS. In the future, a more measurement device can be applied to, and be able to feed more alarm criteria for the review of the risk in the field.

Development of Automatic Coil-Handling Crane Control System (크레인 무인 자동 운전 시스템 개발)

  • Choi Chintae;Shin K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.126-133
    • /
    • 2004
  • Lots of researches and applications on the automated overhead cranes in shops have been done for some decades, but a few successful results are reported. Integrated crane control systems designed by famous engineering companies are still expensive and are not satisfactory in view of maintenance and reliability. A more reasonable control system fit to requirements of manufacturing industries is suggested in the study. The new deigned system has superior capabilities for anti-sway of rope and position control. The controller for automated operations is composed of a Linux-based PC for non real-time control and a high-speed PLC for hard real-time control. Some algorithms required for coil yard operations as well as main control algorithms such as reference position generation, position control and anti-sway control have been designed and fully tested on the new crane simulator. The designed crane control system showed satisfactory performance on position control accuracy and anti-sway of rope. The maximum positional error is 8mm and the maximum sway error is 0.1 degrees. The suggested control strategies have been successfully applied to the 10-1 crane in No. 4 CGL of in the Kwangyang Steel Works and in commercial operation.

  • PDF

A Study on Modeling of Unmanned Gantry Crane (1) (UGC 모델링에 관한 연구(I))

  • 박경택;김두형;신영재;박찬훈;김용선
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.333-344
    • /
    • 1999
  • Currently many studies on the unmanned gantry crane for the automated container terminal are accomplished. This is needed for the development of large scale, automation, high speed, unmanned system and information system in port facility. In order to do efficient container handling job in port yard, the automated handling system is well adapted to the job environments and all-season weather, In order to realize the automatic and unmanned system for container handling job, the required functions and main structure system are studied. The major problems of operation of the conventional gantry crane are that the vibration of gantry structure body is occurred by operation and that high-speed and precision position-velocity control and the capability to dope to the external disturbances caused by the wind, rain, fog and job environments. In this paper, the fundamental study for establishment of the concept and the dynamic modelling of the major sub system of the unmanned gantry crane is presented. These studies are useful for design and manufacturing of the new concept model of the unmanned gantry crane for efficient operation of the automated container terminal.

  • PDF

Anti-Sway System of Container Transfer Crane for Automated Container Terminal : Part I - Basic Structure, Modeling and Control (자동화 컨테이너 터미널을 위한 컨테이너 트랜스퍼 크레인의 안티 스웨이 시스템;Part I - 기본 구조, 모델링, 제어)

  • 박찬훈;김두형;신영재;박경택
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1112-1118
    • /
    • 2004
  • Automated container terminals have been developed over the world years and many countries are interested in them because the amount of containers exported or imported is rapidly increasing. The conventional container terminals were not designed to handle this kind of heavily many containers. They would face many structural problems soon or later, although they have been managed to do well so far. One of the most important things in automated container terminal is the handing equipments able to transfer many containers efficiently. Those are maybe automated transfer cranes, automatic guided vehicles and automated quay-side cranes. The word 'automated' means the equipment is operated without drivers and those equipments are able to work without any interruption in working schedule. Through the researches on the conventional transfer cranes, we decided that the structure of conventional transfer cranes is not proper in automated container terminal and it is not possible to handle so many container in limited time. Therefore we have been studying on the proper structure of the automated container for past several years and a new type of transfer cranes has been developed. Design concept and control method of the new crane are introduced and experimental results are presented in this paper.his paper.

Development of a Motion Control Algorithm for the Automatic Operation System of Overhead Cranes (천장크레인의 무인운전 시스템을 위한 운동제어 알고리즘 개발)

  • Lee, Jong-Kyu;Park, Young-Jo;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3160-3172
    • /
    • 1996
  • A search algorithm for the collision free, time optimal transport path of overhead cranes has been proposed in this paper. The map for the working environment of overhead cranes was constructed in the form of three dimensional grid. The obstacle occupied region and unoccupied region of the map has been represented using the octree model. The best-first search method with a suitable estimation function was applied to select the knot points on the collision free transport path to the octree model. The optimization technique, minimizing the travel time required for transporting objects to the goal while subjected to the dynamic constraints of the crane system, was developed to find the smooth time optimal path in the form of cubic spline functions which interpolate the selected knot points. Several simulation results showed that the selected estimation function worked effectively insearching the knot points on the collision free transport path and that the resulting transport path was time optimal path while satisfying the dynamic constraints of the crane system.

A Study on the Development of Hoisting Rope Automatic Vertical Controller for the Hoist Crane (호이스트 크레인의 권상로프 자동수직 조정장치 개발에 관한 연구)

  • 구건호;이충렬;이근오
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.47-55
    • /
    • 1995
  • We got operational safety limit angle being able to affect operators or materials surrounding the center of vertical line of the hoist on working from the theoretical review and experimental result. Then we inferred the distance to about 1.2m-1.4m from the center which materials hanged on the hook were able to effect to the surround. Therefore, we got about $7^{\circ}$ to the inclined or crossed operational safety limit angle of the crane with 6m lift. Also, we developed heisting rope automatic vertical controller which could control this kind of dangerous operation. And we did experiments again after establishing the inclined or crossed operational safety limit to $7^{\circ}$. The result is satisfied.

  • PDF

Development of Expert System for Tower Cranes

  • Kim, Ki-sung;Kang, Dong-gil;Hong, Ki-sup
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.2
    • /
    • pp.27-48
    • /
    • 1999
  • The paper is concerned with application to develop the expert system, which structural analysis and design process for tower cranes. The system is organized into three groups. One is pre-processor for creating input data files, another is `model former' which combines knowledge-base with inference engine for automatic generating structural analysis models, a third is application group for final analysis checks. In this study, geometric subroutine of `model former' designates node positions, nodes, elements numbers and element types. Load data subroutine computes weight of tower crane and device, slewing force, cargo load, wind force form rules or equations in knowledge-base. Also, Property and boundary subroutine applies element properties and boundary conditions to suitable elements and nodes. Design and analysis expert system for tower crane integrates these subroutine, `model former' and pre-processor. RBR(Rule-Base Reasoning) was adopted for a reasoning strategy of this expert system. And this expert system can produce structural analysis model and data, which can be used in ordinary structural analysis program (SAP, ADINA or NASTRAN, etc.). In this paper, this expert system produces format of the analysis model data, which are used in MSC/NASTRAN. The main discussions included in the paper are introduction of the tower crane and structural analysis, composition of the design expert system for tower crane and structural analysis using the expert system.

  • PDF

Anti-sway Control of Crane System Using Hybrid Control Method (하이브리드 방식을 이용한 크레인의 앤티스웨이 제어)

  • Park, H.S.;Kim, H.S.;Park, J.H.;Lee, D.H.;Kim, S.B.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.67-72
    • /
    • 1998
  • In crane control system, it is required that the travelling time of crane must be reduced as much as possible and there is no the swing of load at the end and starting points. In this paper, we present a hybrid control method which includes two control methods of the optimal regulator and the velocity pattern control in order to realize high performance of the anti-sway. To implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the linear time invariant state equation can be obtained. A 1/10 sized model crane of the usual gantry cranes is made and used to show the applicability of the developed hybrid control method. The effectiveness of developed hybrid control method is proved by experimental results which show us good performance for anti-sway control comparing to conventional velocity pattern control. Practically, it is expected that the proposed control system will make an important contribution to the automatic crane control system of the industrial fields.

  • PDF