• 제목/요약/키워드: automatic categorization

검색결과 84건 처리시간 0.018초

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • 한국멀티미디어학회논문지
    • /
    • 제13권12호
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.

자동 분류 기법과 지적 구조 분석 기법을 융합한 처방적 분석 시스템 구현 방안 연구 (Prescriptive Analytics System Design Fusing Automatic Classification Method and Intellectual Structure Analysis Method)

  • 정도헌
    • 정보관리학회지
    • /
    • 제34권4호
    • /
    • pp.33-57
    • /
    • 2017
  • 본 연구는 새로운 분석법으로 떠오르는 처방적 분석 기법을 소개하고, 이를 분류 기반의 시스템에 효율적으로 적용하는 방안을 제시하는 것을 목적으로 한다. 처방적 분석 기법은 분석의 결과를 제시함과 동시에 최적화된 결과가 나오기까지의 과정 및 다른 선택지까지 제공한다. 새로운 개념의 분석 기법을 도입함으로써 문헌 분류를 기반으로 하는 응용 시스템을 더욱 쉽게 최적화하고 효율적으로 운영하는 방안을 제시하였다. 최적화의 과정을 시뮬레이션하기 위해, 대용량의 학술문헌을 수집하고 기준 분류 체계에 따라 자동 분류를 실시하였다. 처방적 분석 개념을 적용하는 과정에서 대용량의 문헌 분류를 위한 동적 자동 분류 기법과 학문 분야의 지적 구조 분석 기법을 동시에 활용하였다. 실험의 결과로 효과적으로 서비스 분류 체계를 수정하고 재적용할 수 있는 몇 가지 최적화 시나리오를 효율적으로 도출할 수 있음을 보여 주었다.

해외 데이터베이스의 통제키워드에 기초한 국내 학술지 논문의 자동분류 성능 향상에 관한 실험적 연구 (An Experimental Study on the Performance Improvement of Automatic Classification for the Articles of Korean Journals Based on Controlled Keywords in International Database)

  • 김판준;이재윤
    • 한국문헌정보학회지
    • /
    • 제48권3호
    • /
    • pp.491-510
    • /
    • 2014
  • 학술지 논문의 효율적인 관리 및 검색을 위한 주요 요소인 키워드는 통제키워드와 비통제키워드로 구분할 수 있다. 그러나 현재 국내 데이터베이스에서 대부분의 학술지 논문에는 비통제키워드인 저자키워드만이 부여되어 있을 뿐, 망라적인 탐색을 돕는 통제키워드로서 디스크립터는 제공되지 않고 있다. 이 연구에서는 해외 데이터베이스의 학술지 논문에 부여된 통제키워드를 학습한 분류기를 사용하여, 국내 학술지 논문에 디스크립터를 자동 할당하는 실험을 수행하였다. 그 결과, 국외 데이터베이스의 디스크립터 학습을 통해 영문 초록이 있는 국내 학술지 논문에 통제키워드를 자동 할당할 수 있는 가능성을 확인하였다. 또한, 다양한 분류기 및 분류기 결합을 통하여 이러한 디스크립터 자동 할당의 성능 향상을 모색하였다.

맥락정보를 이용한 기록 자동분류시스템 설계 (Design of Automatic Records Classification System Using Contextual Information)

  • 장지숙;이해영
    • 한국기록관리학회지
    • /
    • 제9권1호
    • /
    • pp.151-173
    • /
    • 2009
  • 기록학에서의 분류는 기록 자체의 내용보다는 기록이 생산되고 활용되는 맥락에 초점을 둔다. 본 연구에서는 업무활동이 반영된 기록을 업무활동 분석에 기반하여 구축된 분류체계에, 개별 기록의 내용이 아닌 기록의 집합적 맥락을 중심으로 자동분류 할 수 있는 기록 자동분류시스템을 설계하였다. 기 분류된 기록집합체뿐 아니라 분류체계와 시소러스를 분류기준으로 같이 구축하여 상호보완 할 수 있도록 설계하였으며, 분류대상기록의 범주를 할당한 후 바로, 분류된 기록의 맥락정보를 실시간으로 분류기준에 반영할 수 있는 방안도 포함하였다. 설계된 기록 자동분류시스템은 맥락정보의 품질에 따라 시스템의 성능이 좌우되는 한계가 있지만, 이를 통해 맥락정보를 제대로 충실하게 남길 수 있도록 유도하는 역할을 할 수 있다고 판단되었다.

용어 자동분류를 사용한 검색어 범주화의 분석적 고찰 (An Analytic Study on the Categorization of Query through Automatic Term Classification)

  • 이태석;정도헌;문영수;박민수;현미환
    • 정보처리학회논문지D
    • /
    • 제19D권2호
    • /
    • pp.133-138
    • /
    • 2012
  • 검색 창을 통해 입력된 검색어는 정보이용자가 의미 있는 자료를 찾아내는 적극적인 활동의 산물이다. 따라서 검색로그는 정보이용자의 관심사항을 알 수 있는 중요한 분석 데이터이다. 본 연구의 목적은 입력한 검색어의 범주화 결과와 엑세스한 문서의 범주가 어느 정도 유사한 상관관계를 가지는지 분석적으로 고찰해보는 것이다. KISTI(한국과학기술정보연구원)의 NDSL(과학기술정보센터) 사이트의 2009년 검색로그의 검색세션을 식별하고 검색세션단위로 검색어와 이용 자료를 추출한 후, 검색어에 대해 어떤 주제 분류에 속하는 용어인지 자동분류기로 식별한 결과가 실제 이용한 자료의 주제 분야와 잘 맞는지 비교하였다. 그 결과 상위 100개 검색어 분류에 대한 유사도 평균이 58.8%로 파악되었다. 결국 전체적인 유사도는 58.8%이하이며, 관련 연구에서 수행한 자료의 자동분류 검색성능 전문가 평가 결과인 76.8%에 비해 낮다. 이것은 검색어로 쓰인 용어가 다른 연구 분야의 관심 용어로 새롭게 주목 받고 있기 때문이라는 사실을 알 수 있었다.

자질선정을 통한 국내 학술지 논문의 자동분류에 관한 연구 (An Experimental Study on the Automatic Classification of Korean Journal Articles through Feature Selection)

  • 김판준
    • 정보관리학회지
    • /
    • 제39권1호
    • /
    • pp.69-90
    • /
    • 2022
  • 국내 학술연구의 동향을 구체적으로 파악하여 연구개발 활동의 체계적인 지원 및 평가는 물론 현재와 미래의 연구 방향을 설정할 수 있는 기초 데이터로서, 개별 학술지 논문에 표준화된 주제 범주(통제키워드)를 부여할 수 있는 효율적인 방안을 모색하였다. 이를 위해 한국연구재단 「학술연구분야분류표」 상의 분류 범주를 국내학술지 논문에 자동 할당하는 과정에서, 자질선정 기법을 중심으로 자동분류의 성능에 영향을 미치는 주요 요소들에 대한 다각적인 실험을 수행하였다. 그 결과, 실제 환경의 불균형 데이터세트(imbalanced dataset)인 국내 학술지 논문의 자동분류에서는 보다 단순한 분류기와 자질선정 기법, 그리고 비교적 소규모의 학습집합을 사용하여 상당히 좋은 수준의 성능을 기대할 수 있는 것으로 나타났다.

기계학습을 통한 디스크립터 자동부여에 관한 연구 (A Study on automatic assignment of descriptors using machine learning)

  • 김판준
    • 정보관리학회지
    • /
    • 제23권1호
    • /
    • pp.279-299
    • /
    • 2006
  • 학술지 논문에 디스크립터를 자동부여하기 위하여 기계학습 기반의 접근법을 적용하였다. 정보학 분야의 핵심 학술지를 선정하여 지난 11년간 수록된 논문들을 대상으로 문헌집단을 구성하였고, 자질 선정과 학습집합의 크기에 따른 성능을 살펴보았다. 그 결과, 자질 선정에서는 카이제곱 통계량(CHI)과 고빈도 선호 자질 선정 기준들(COS, GSS, JAC)을 사용하여 자질을 축소한 다음, 지지벡터기계(SVM)로 학습한 결과가 가장 좋은 성능을 보였다. 학습집합의 크기에서는 지지벡터기계(SVM)와 투표형 퍼셉트론(VPT)의 경우에는 상당한 영향을 받지만 나이브 베이즈(NB)의 경우에는 거의 영향을 받지 않는 것으로 나타났다.

A Novel Whale Optimized TGV-FCMS Segmentation with Modified LSTM Classification for Endometrium Cancer Prediction

  • T. Satya Kiranmai;P.V.Lakshmi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.53-64
    • /
    • 2023
  • Early detection of endometrial carcinoma in uterus is essential for effective treatment. Endometrial carcinoma is the worst kind of endometrium cancer among the others since it is considerably more likely to affect the additional parts of the body if not detected and treated early. Non-invasive medical computer vision, also known as medical image processing, is becoming increasingly essential in the clinical diagnosis of various diseases. Such techniques provide a tool for automatic image processing, allowing for an accurate and timely assessment of the lesion. One of the most difficult aspects of developing an effective automatic categorization system is the absence of huge datasets. Using image processing and deep learning, this article presented an artificial endometrium cancer diagnosis system. The processes in this study include gathering a dermoscopy images from the database, preprocessing, segmentation using hybrid Fuzzy C-Means (FCM) and optimizing the weights using the Whale Optimization Algorithm (WOA). The characteristics of the damaged endometrium cells are retrieved using the feature extraction approach after the Magnetic Resonance pictures have been segmented. The collected characteristics are classified using a deep learning-based methodology called Long Short-Term Memory (LSTM) and Bi-directional LSTM classifiers. After using the publicly accessible data set, suggested classifiers obtain an accuracy of 97% and segmentation accuracy of 93%.

용어 가중치와 역범주 빈도에 의한 자동문서 범주화 (Automatic Text Categorization by Term Weighting and Inverted Category Frequency)

  • 이경찬;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2003년도 제15회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.14-17
    • /
    • 2003
  • 문서의 확률을 이용하여 자동으로 문서를 분류하는 문서 범주화 기법의 대표적인 방법이 나이브 베이지언 확률 모델이다. 이 방법의 기본 형식은 출현 용어의 확률 계산 방법이다. 하지만 실제 문서 범주화 과정에서 출현하지 않는 용어들도 성능에 많은 영향을 줄 수 있으며, 출현 용어들에 대한 빈도 이외의 역범주 빈도나 용어가중치를 적용하여 문서 범주화 시스템의 성능을 향상시킬 수 있다. 본 논문에서는 나이브 베이지언 확률 모델에 출현 용어와 출현하지 않는 용어들에 대한 smoothing 기법을 적용하여 실험하였다. 성능 평가를 위해 뉴스그룹 문서들을 이용하였으며, 역범주 빈도와 가중치를 적용했을 때 나이브 베이지언 확률 모델에 비해 약 7% 정도 성능 개선 효과가 있었다.

  • PDF

자질 중요도 계산 기법에 의한 자동문서 범주화 (Automatic Document Categorization by the Importance of Features)

  • 이경찬;강승식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.537-539
    • /
    • 2003
  • 문서 범주화를 위해 자질을 선별하는 기법으로는 자질의 출현 빈도에 따라 범주를 대표하는 자질들을 선별하는 것이 일반적이다. 출현 빈도에 의한 자질을 선별하는 통계적인 기법은 문서의 내용을 대표하는 용어들의 중요도를 간과하는 문제가 발생한다. 본 논문에서는 학습 문서 및 실험 문서에서 자질의 중요도에 의해 범주 대표어를 선별하는 문서 범주화 기법을 제안하였으며, 역범주 빈도 및 카이제곱 통계량에 의해 자질을 선별하는 방법과 비교-실험을 하였다. 문서 범주화 모델로는 나이브 베이지언 확률 모델을 이용하였으며, 성능 평가를 위해서 웹 디렉토리에서 수집된 데이터를 이용하여 실험하였다. 본 논문에서 제안한 자질 중요도에 의한 자질 선별 기법은 용어의 출현 빈도 및 카이제곱 통계량에 의해 자질을 선별한 방법보다 더 나은 성능을 보였다.

  • PDF