• 제목/요약/키워드: automatic categorization

검색결과 84건 처리시간 0.023초

문장 중요도를 이용한 자동 문서 범주화 (Automatic Text Categorization using the Importance of Sentences)

  • 고영중;박진우;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권6호
    • /
    • pp.417-424
    • /
    • 2002
  • 자동 문서 범주화란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 분류하는 작업이다. 문서 분류를 위해서는 문서들을 가장 잘 표현할 수 있는 자질들을 정하고, 이러한 자질들을 통해 분류할 문서를 표현해야 한다. 기존의 연구들은 문장간의 구분 없이, 문서 전체에 나타난 각 자질의 빈도수를 이용하여 문서를 표현 한다. 그러나, 하나의 문서 내에서도 중요한 문장과 그렇지 못한 문장의 구분이 있으며, 이러한 문장 중요도의 차이는 각각의 문장에 나타나는 자질의 중요도에도 영향을 미친다. 본 논문에서는 문서 요약에서 사용되는 중요 문장 추출 기법을 문서 분류에 적용하여, 문서 내에 나타나는 각 문장들의 문장 중요도를 계산하고 문서의 내용을 잘 나타내는 문장들과 그렇지 못한 문장들을 구분하여 각 문장에서 출현하는 자질들의 가중치를 다르게 부여하여 문서를 표현한다. 이렇게 문장들의 중요도를 고려하여 문서를 표현한 기법의 성능을 평가하기 위해서 뉴스 그룹 데이타를 구축하고 실험하였으며 문장 중요도를 사용하지 않은 시스템 보다 향상된 성능을 얻을 수 있었다.

사생활 보호를 위한 생체 신호기반 컨택스트 분석 및 구분기법 (Context categorization of physiological signal for protecting user's privacy)

  • 최아영;우마 라쉬드;우운택
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.960-965
    • /
    • 2006
  • Privacy and security are latent problems in pervasive healthcare system. For the sake of protecting health monitoring information, it is necessary to classify and categorize the various contexts in terms of obfuscation. In this paper, we propose the physiological context categorization and specification methodology by exploiting data fusion network for automatic context alignment. In addition, we introduce the methodologies for making various level of physiological context on the context aware application model, which is wear-UCAM. This physiological context has several layers of context according to the level of abstraction such as user-friendly level or parametric level. This mechanism facilitates a user to restrict access to his/her monitoring results based on the level of details in context.

  • PDF

FP-Tree를 이용한 문서 분류 방법 (Text Document Categorization using FP-Tree)

  • 박용기;김황수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권11호
    • /
    • pp.984-990
    • /
    • 2007
  • 전자 문서의 급속한 증가로 인하여 자동 문서 분류의 필요성도 증가하고 있다. 기존의 문서 분류 방법들은 대개 문서를 단어의 집합으로 간주하여 기계 학습의 방법을 그대로 적용하거나 악간의 변형을 가한 방법들이 대부분이다. 본 논문에서는 데이타 마이닝 분야에서 사용되는 FP-Tree 구조를 이용하여 문서내의 문장들의 패턴을 저장하고 이를 사용하여 문서를 분류하는 방법(FPTC)을 제시한다. 또한 FP-Tree를 이용한 방법에 상호 정보량과 문장별 엔트로피를 적용하여 분류 정확도를 높이는 방법 그리고 각각의 실험 결과와 함께 다른 문서 분류 알고리즘과 비교 분석한 결과를 살펴보기로 한다.

Building Topic Hierarchy of e-Documents using Text Mining Technology

  • Kim, Han-Joon
    • 한국전자거래학회:학술대회논문집
    • /
    • 한국전자거래학회 2004년도 e-Biz World Conference
    • /
    • pp.294-301
    • /
    • 2004
  • ·Text-mining approach to e-documents organization based on topic hierarchy - Machine-Learning & information Theory-based ㆍ 'Category(topic) discovery' problem → document bundle-based user-constraint document clustering ㆍ 'Automatic categorization' problem → Accelerated EM with CU-based active learning → 'Hierarchy Construction' problem → Unsupervised learning of category subsumption relation

  • PDF

문헌간 유사도를 이용한 SVM 분류기의 문헌분류성능 향상에 관한 연구 (Improving the Performance of SVM Text Categorization with Inter-document Similarities)

  • 이재윤
    • 정보관리학회지
    • /
    • 제22권3호
    • /
    • pp.261-287
    • /
    • 2005
  • 이 논문의 목적은 SVM(지지벡터기계) 분류기의 성능을 문헌간 유사도를 이용해서 향상시키는 것이다. SVM은 효과적인 기계학습 시스템으로서 최고 수준의 문헌자동분류 기술로 인정받고 있다. 이 연구에서는 문헌 벡터 자질 표현에 기반한 SVM 문헌자동분류를 제안하였다. 제안한 방식은 분류 자질로 색인어 대신 문헌 벡터를, 자질 값으로 가중치 대신 벡터유사도를 사용한다. 제안한 방식에 대한 실험 결과, SVM 분류기의 성능을 향상시킬 수 있었다. 실행 효율 향상을 위해서 문헌 벡터 자질 선정 방안과 범주 센트로이드 벡터를 사용하는 방안을 제안하였다. 실험 결과 소규모의 벡터 자질 집합만으로도 색인어 자질을 사용하는 기존 방식보다 나은 성능을 얻을 수 있었다.

준지도 학습 기반의 자동 문서 범주화 (Automatic Text Categorization based on Semi-Supervised Learning)

  • 고영중;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권5호
    • /
    • pp.325-334
    • /
    • 2008
  • 자동 문서 범주화란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 할당하는 작업이다. 자동 문서 범주화에 관한 기존의 연구들은 지도 학습 기반으로서, 보통 수작업에 의해 범주가 할당된 대량의 학습 문서를 이용하여 범주화 작업을 학습한다. 그러나, 이러한 방법의 문제점은 대량의 학습 문서를 구축하기가 어렵다는 것이다. 즉, 학습 문서 생성을 위해 문서를 수집하는 것은 쉬우나, 수집된 문서에 범주를 할당하는 것은 매우 어렵고 시간이 많이 소요되는 작업이라는 것이다. 본 논문에서는 이러한 문제점을 해결하기 위해서, 준지도 학습 기반의 자동 문서 범주화 기법을 제안한다. 제안된 기법은 범주가 할당되지 않은 말뭉치와 각 범주의 핵심어만을 사용한다. 각 범주의 핵심어로부터 문맥간의 유사도 측정 기법을 이용한 부스트래핑(bootstrapping) 기법을 통하여 범주가 할당된 학습 문서를 자동으로 생성하고, 이를 이용하여 학습하고 문서 범주화 작업을 수행한다. 제안된 기법은 학습 문서 생성 작업과 대량의 학습 문서 없이 적은 비용으로 문서 범주화를 수행하고자 하는 영역에서 유용하게 사용될 수 있을 것이다.

최대 개념강도 인지기법을 이용한 데이터베이스 자동선택 방법에 관한 연구 (A Study on Automatic Database Selection Technique Using the Maximal Concept Strength Recognition Method)

  • 정도헌
    • 정보관리학회지
    • /
    • 제27권3호
    • /
    • pp.265-281
    • /
    • 2010
  • 본 연구에서 제안하는 기법은 최대 개념강도 인지기법(Maximal Concept-Strength Recognition Method: MCR)이다. 신규 데이터베이스가 입수되어 자동분류가 필요한 경우에, 기 구축된 여러 데이터 베이스 중에서 최적의 데이터베이스가 어떤 것인지 알 수 없는 상태에서 MCR 기법은 가장 유사한 데이터베이스를 선택할 수 있는 방법을 제공한다. 실험을 위해 서로 다른 4개의 학술 데이터베이스 환경을 구성하고 MCR 기법을 이용하여 최고의 성능값을 측정하였다. 실험 결과, MCR을 이용하여 최적의 데이터베이스를 정확히 선택할 수 있었으며 MCR을 이용한 자동분류 정확률도 최고치에 근접하는 결과를 보여주었다.

자동분류를 이용한 정답문서집합 구축 (Construction of Answer Sets using Automatic Categorization)

  • 장문수;오효정;장명길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.494-499
    • /
    • 2001
  • 최근의 인터넷 정보검색은 방대한 정보의 수용과 지능적이고 개인화된 검색 결과 요구라는 사뭇 상반된 요구를 만족시켜야 한다. 기계적으로 키워드를 매칭시켜 나오는 문서를 사용자에게 맡기는 식의 검색은 더 이상 환영을 받지 못한다. 우리는 이러한 추세에 맞추어 의미기반 정보검색에 필요한 개념망과 정답문서집합으로 구성된 지식베이스를 제안한 바 있다. 본 논문에서는 방대한 구조의 개념망과 연결되는 정답문서집합을 유동적인 인터넷 환경에 적용하기 위해 자동으로 구축하는 시스템을 제시한다. 자동구축은 문서분류(document categorization) 기술을 활용하여 개념어에 문서를 할당하는 방법과 속성에 문서를 할당하는 방법으로 나누어 이루어진다. 제시한 방법은 실험을 통하여 기본적인 속성 할당에는 상당한 효과가 있는 것으로 판단되었고, 일부 미할당 문서에 대해서는 클러스터링과 같은 다른 알고리즘이 필요하다.

  • PDF

Automatic Adverb Error Correction in Korean Learners' EFL Writing

  • Kim, Jee-Eun
    • International Journal of Contents
    • /
    • 제5권3호
    • /
    • pp.65-70
    • /
    • 2009
  • This paper describes ongoing work on the correction of adverb errors committed by Korean learners studying English as a foreign language (EFL), using an automated English writing assessment system. Adverb errors are commonly found in learners 'writings, but handling those errors rarely draws an attention in natural language processing due to complicated characteristics of adverb. To correctly detect the errors, adverbs are classified according to their grammatical functions, meanings and positions within a sentence. Adverb errors are collected from learners' sentences, and classified into five categories adopting a traditional error analysis. The error classification in conjunction with the adverb categorization is implemented into a set of mal-rules which automatically identifies the errors. When an error is detected, the system corrects the error and suggests error specific feedback. The feedback includes the types of errors, a corrected string of the error and a brief description of the error. This attempt suggests how to improve adverb error correction method as well as to provide richer diagnostic feedback to the learners.

단일 카테고리 문서의 다중 카테고리 자동확장 방법론 (A Methodology for Automatic Multi-Categorization of Single-Categorized Documents)

  • 홍진성;김남규;이상원
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.77-92
    • /
    • 2014
  • 텍스트에 대한 사용자의 접근성을 향상시키기 위해, 이들 문서는 정해진 기준에 따라 카테고리로 분류되어 제공되고 있다. 과거에는 카테고리 분류 작업이 수작업으로 수행되었지만, 문서 작성자에게 분류를 맡기는 경우 분류 정확성을 보장할 수 없고 관리자가 모든 분류를 담당하는 경우 많은 시간과 비용이 소요된다는 어려움이 있었다. 이러한 한계를 극복하기 위해 카테고리를 자동으로 식별할 수 있는 문서 분류 기법에 대한 연구가 활발하게 수행되었다. 하지만 대부분의 문서 분류 기법은 각 문서가 하나의 카테고리에만 속하는 경우를 가정하고 있기 때문에, 하나의 문서가 다양한 주제를 갖는 실제 상황과 부합하지 않는다는 한계를 갖는다. 이를 보완하기 위해 최근 문서의 다중 카테고리 식별을 위한 연구가 일부 수행되었으나, 이들 연구는 대부분 이미 다중 카테고리가 부여되어 있는 문서에 대한 학습을 통해 분류 규칙을 생성하므로 단일 카테고리만 부여되어 있는 기존 문서의 다중 카테고리 식별에는 적용할 수 없다는 제약을 갖는다. 따라서 본 연구에서는 이러한 제약을 극복하기 위해, 카테고리, 토픽, 문서간 관계 분석을 통해 단일 카테고리를 갖는 문서로부터 추가 주제를 발굴하여 이를 다중 카테고리로 자동 확장시킬 수 있는 방법론을 제안하였다. 실험 결과 원 카테고리가 식별된 총 24,000건의 문서 중 23,089건에 대해 카테고리를 확장시킬 수 있었다. 또한 정확도 분석에서 카테고리의 특성에 따라 카테고리 분류 정확도가 상이하게 나타나는 현상을 발견하였다. 본 연구는 단일 카테고리로 분류된 문서에 대해 다중 카테고리를 추가로 식별하여 부여함으로써, 규칙 학습 과정에서 다중 카테고리가 부여된 문서를 필요로 하는 기존 다중 카테고리 문서 분류 알고리즘의 활용성을 매우 향상시킬 수 있을 것으로 기대한다.