• Title/Summary/Keyword: automatic cartography

Search Result 152, Processing Time 0.017 seconds

3D Spatial Data Model Design and Application (3차원 공간 모형 데이터의 구축과 활용)

  • Lee Jun Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.109-116
    • /
    • 2005
  • 3D Spatial Data, namely 3D Urban CG model express the building, road, river in virtual world and accumulate, manage the data in the GIS system. It is important infrastructure which expected in many usages. Recently 3D CG urban model needs much manual effort, time and costs to build them. In this paper, we introduce the integration of GIS, CG and automatic production of the $\lceil$3D Spatial Data Infrastructure$\rfloor$. This system make filtering, divide the polygon, generate the outlines of the GIS building map, design the graphic and property information and finally make automatic 3D CG models.

Automatic Registration between Multiple IR Images Using Simple Pre-processing Method and Modified Local Features Extraction Algorithm (단순 전처리 방법과 수정된 지역적 피쳐 추출기법을 이용한 다중 적외선영상 자동 기하보정)

  • Kim, Dae Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.485-494
    • /
    • 2017
  • This study focuses on automatic image registration between multiple IR images using simple preprocessing method and modified local feature extraction algorithm. The input images were preprocessed by using the median and absolute value after histogram equalization, and it could be effectively applied to reduce the brightness difference value between images by applying the similarity of extracted features to the concept of angle instead of distance. The results were evaluated using visual and inverse RMSE methods. The features that could not be achieved by the existing local feature extraction technique showed high image matching reliability and application convenience. It is expected that this method can be used as one of the automatic registration methods between multi-sensor images under specific conditions.

Development and Application of the GIS-based Global Cadastral Non-coincidence Surveying Method for the Cadastral Re-survey (지적재조사를 위한 GIS 기반의 광역 지적불부합지 조사 기법의 개발과 적용)

  • Hong Sung Eon;Yi Seong Kyu;Park Soohong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • Korean government has constructed a nationwide cadastral map database through the cadastral map computerization project and also produced a variety of spatial data through the NGIS (National Geographic Information Systems) project. Under this circumstance, it is needed to set up the new automatic methodology that effectively solve cadastral non-coincidence problems by using various digital map data instead of expensive field survey methods. This study proposed a new automatic methodology for cadastral non-coincidence surveying and developed a prototype system as a proof of concept. Validation of this proposed method was done with some test areas. Results showed that this methodology could easily detect and assess both regional non-coincidence levels and cadastral map quadrangle non-coincidence levels. We expect that this new methodology can provide many benefits in planning and determining work priority of the forthcoming nationwide cadastral re-surveying project.

Automatic Registration Between KOMPSAT-2 and TerraSAR-X Images (KOMPSAT-2 영상과 TerraSAR-X 영상 간 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Chae, Tae-Byeong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.667-675
    • /
    • 2011
  • In this paper, we propose an automatic image-to-image registration between high resolution multi-sensor images. To do this, TerraSAR-X image was shifted according to the initial translation differences of the x and y directions between images estimated using Mutual Information method. After that, the Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on the similarities of their locations and gradient orientations. For extracting large number of evenly distributed matching points, only one point within each regular grid constructed throughout the image was extracted to the final matching point pair. The model, which combined the piecewise linear function with the global affine transformation, was applied to increase the accuracy of the geometric correction, and the proposed method showed RMSE lower than 5m in all study sites.

Automatic Registration of High Resolution Satellite Images using Local Properties of Tie Points (지역적 매칭쌍 특성에 기반한 고해상도영상의 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Choi, Jae-Wan;Han, Dong-Yeob;Kim, -Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.353-359
    • /
    • 2010
  • In this paper, we propose the automatic image-to-image registration of high resolution satellite images using local properties of tie points to improve the registration accuracy. A spatial distance between interest points of reference and sensed images extracted by Scale Invariant Feature Transform(SIFT) is additionally used to extract tie points. Coefficients of affine transform between images are extracted by invariant descriptor based matching, and interest points of sensed image are transformed to the reference coordinate system using these coefficients. The spatial distance between interest points of sensed image which have been transformed to the reference coordinates and interest points of reference image is calculated for secondary matching. The piecewise linear function is applied to the matched tie points for automatic registration of high resolution images. The proposed method can extract spatially well-distributed tie points compared with SIFT based method.

Automatic Recognition of Direction Information in Road Sign Image Using OpenCV (OpenCV를 이용한 도로표지 영상에서의 방향정보 자동인식)

  • Kim, Gihong;Chong, Kyusoo;Youn, Junhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.293-300
    • /
    • 2013
  • Road signs are important infrastructures for safe and smooth traffic by providing useful information to drivers. It is necessary to establish road sign DB for managing road signs systematically. To provide such DB, manually detection and recognition from imagery can be done. However, it is time and cost consuming. In this study, we proposed algorithms for automatic recognition of direction information in road sign image. Also we developed algorithm code using OpenCV library, and applied it to road sign image. To automatically detect and recognize direction information, we developed program which is composed of various modules such as image enhancement, image binarization, arrow region extraction, interesting point extraction, and template image matching. As a result, we can confirm the possibility of automatic recognition of direction information in road sign image.

A Study on Marine Pile Construction Management by Real-Time Kinematic GPS Positioning (RTK-GPS 측량에 의한 해상파일 시공관리에 관한 연구)

  • 강길선
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.4
    • /
    • pp.393-401
    • /
    • 2003
  • Automatic control technologies for the marine pile driving provides accurate and rapid intruding into the planned positions of the pile with planned slope and direction, so that the construction maintenance and management are more efficient and the quality of the construction is more promising. Therefore, in this study, the application scheme of RTK GPS to the automatic control of the pile driving presented. It is expected that the presented scheme using the precise RTK GPS technique assures the efficient and economic 3D positioning accuracy for the precise marine construction management like the precise foundation of marine structures made of piles and the dredging work. It is found that the suggested scheme decrease 60% of the construction error compared with specifications reference because marine position accuracy is measured within 4cm in real time. In addition, the automatic position control system using GPS reduced the construction period and cost compared with existing methods about 30% and 35%, respectively.

The Accuracy Analysis of Design Profile Generation using 3D Digital Terrain Model (3D DTM을 이용한 설계용 프로파일 생성 정확도 분석)

  • Um, Dae-Yong;Lee, Eun-Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.583-590
    • /
    • 2008
  • In construction work's design process, we must carry out a topographical survey for construction reserved land and to the basis of this, production of profile is indispensable factor for the purpose of every construction work such as road, rail way, canal and etc. From this research, the production of profile about construction reserved land, using topographical information of digital topographical map produced by NGIS project, construct precision 3D terrain model and from this, propose plans for utilizing by producing automatic profile. With the aim of this, extract every layers of main facilities and altitude from digital topographical map and while producing 3D terrain model by using this, we product automatic profile from precision 3D terrain model. And we was carried out to check whether the automatic produced profile's accuracy could be accepted at actual estimation by mutual analysis. It is considered that the result of the research could be suggested as a new techniques concept which can reduce the designing period and expenses and increase the efficiency of affair in the design process for the construction.

Integrated Automatic Pre-Processing for Change Detection Based on SURF Algorithm and Mask Filter (변화탐지를 위한 SURF 알고리즘과 마스크필터 기반 통합 자동 전처리)

  • Kim, Taeheon;Lee, Won Hee;Yeom, Junho;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Satellite imagery occurs geometric and radiometric errors due to external environmental factors at the acquired time, which in turn causes false-alarm in change detection. These errors should be eliminated by geometric and radiometric corrections. In this study, we propose a methodology that automatically and simultaneously performs geometric and radiometric corrections by using the SURF (Speeded-Up Robust Feature) algorithm and the mask filter. The MPs (Matching Points), which show invariant properties between multi-temporal imagery, extracted through the SURF algorithm are used for automatic geometric correction. Using the properties of the extracted MPs, PIFs (Pseudo Invariant Features) used for relative radiometric correction are selected. Subsequently, secondary PIFs are extracted by generated mask filters around the selected PIFs. After performing automatic using the extracted MPs, we could confirm that geometric and radiometric errors are eliminated as the result of performing the relative radiometric correction using PIFs in geo-rectified images.

Automatic Road Lane Matching Using Aerial Images (항공사진을 이용한 도로차선 자동매칭)

  • 김진곤;한동엽;유기윤;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.147-152
    • /
    • 2003
  • Aerial Images are usually used to extract 3-D coordinates of various urban features. In this process, the stereo matching of images should be performed precisely to extract these information from aerial Images. In this research, we proposed a matching technique based on geometric features of lanes. We extracted lanes from aerial images and grouped into 4 lane's types. They are lane lines, dotted lines, arrow lane, safety zone. After preprocessing, We will match them by spatial relationships, for example, the distance and orientation between the extracted features. In the future, we will obtain lane coordinates and reconstruct 3-d coordinates of roads.

  • PDF