• Title/Summary/Keyword: autogenous GTAW

Search Result 3, Processing Time 0.015 seconds

Hot Cracking Susceptibility in Welds of High Strength Al Alloys by Using DCSP-GTAW (DCSP-GTAW에 의한 고력 Al합금의 고온균열감수성에 대한 연구)

  • Ha Ryeo-Sun;Jung Byong-Ho;Park Hwa-Soon
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.65-72
    • /
    • 2004
  • The tendency and degree of hot cracking of high strength 5083, 6N01 and 7N01 Al alloy welds by using DCSP-GTAW through modified Varestraint test and autogenous butt welding were investigated. In hot cracking test, 6N01 alloy showed the highest susceptibility to hot cracking in the weld metal and HAZ. Cracking susceptibilities generally increased with increase of solidification temperature range of the base metal and bead penetration-to-width ratio of the weld metal. The cracks in welds of the alloys vertically formed to solid-liquid interface and propagated along with columnar grain boundaries. The fracture facets of cracks showed the typical morphology of solidification crack observed as dendritic structures. Especially, in 6N01 alloy, liquation cracks which were due to elements of Si, Fe and Mg also observed in HAZ near fusion boundary. In butt welding of different Al alloys, the bead crack was mainly occurred in the welds of 6N01, 7N01 and other Al alloys together with 6N01 or 7N01. In the butt welds of 7N01, it was found that the component of Cu had an effect on the higher susceptibility to the hot cracking.

An Evaluation on the Weldability of Al-Li Alloys by Varestraint Testing Method (Varestraint Test법에 의한 Al-Li합금의 용접성 평가)

  • 김형태;이창배;신현식;서창제
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.48-57
    • /
    • 1996
  • The weldability of high purity aluminum-lithium binary alloys has been investigated using the Varestraint test. Autogenous GTAW (gas-tungsten-arc-welds) were run along specimens of different lithium concentration using three sets of welding parameters. Welding voltage was held constant at 10 volts. Welding current (70∼100 amps) and travel speed (23∼33 cm/min) were the parameter varied. Hot-tearing susceptibility varied with lithium content and exhibited a steep peak at 2.6 weight percent lithium. Depth of penetration increased with increasing heat input and lithium concentration. The susceptibility is influenced by the wettability of dendrites by the interdendritic eutectic liquid as well as the time available for back-Siting by eutectic liquid. The welding condition of welding current 70A and travel speed 23 cm/min was showed good resistance to cracking in aluminum-lithium alloys. Suggestions for improving weld cracking resistance are also provided.

  • PDF

The Effect of Shielding N2 gas on The Pitting Corrosion of Seal-welded Super Austenitic Stainless Steel by Autogenous Welding

  • Kim, Ki Tae;Chang, Hyun Young;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.49-58
    • /
    • 2017
  • Many research efforts on the effect of nitrogen on the corrosion resistance of stainless steels have been reported, but little research has been conducted on the effect of nitrogen for the weldment of stainless steels by the seal-weld method. Therefore, this work focused on the determining the corrosion resistance of tube/tube sheet mock-up specimen for sea water condensers, and elucidating the effect of shielding nitrogen gas on its resistance. The pitting corrosion of autogenously welded specimen propagated preferentially along the dendritic structure. Regardless of the percent of shielding nitrogen gas, the analyzed nitrogen contents were very much lower than that of the bulk specimen. This can be arisen because the nitrogen in shielding gas may partly dissolve into the weldment, but simultaneously during the welding process, nitrogen in the alloy may escape into the atmosphere. However, the pitting resistance equivalent number (PREN) of the interdendrite area was higher than that of the dendrite arm, regardless of the shielding gas percent; and the PREN of the interdendrite area was higher than that of the base metal; the PREN of the dendrite arm was lower than that of the base metal because of the formation of (Cr, Mo) rich phases by welding.