• Title/Summary/Keyword: autoML

Search Result 68, Processing Time 0.047 seconds

Modeling of AutoML using Colored Petri Net

  • Yo-Seob, Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Developing a machine learning model and putting it into production goes through a number of steps. Automated Machine Learning(AutoML) appeared to increase productivity and efficiency by automating inefficient tasks that occur while repeating this process whenever machine learning is applied. The high degree of automation of AutoML models allows non-experts to use machine learning models and techniques without the need to become machine learning experts. Automating the process of applying machine learning end-to-end with AutoML models has the added benefit of creating simpler solutions, generating these solutions faster, and often generating models that outperform hand-designed models. In this paper, the AutoML data is collected and AutoML's Color Petri net model is created and analyzed based on it.

AutoML and Artificial Neural Network Modeling of Process Dynamics of LNG Regasification Using Seawater (해수 이용 LNG 재기화 공정의 딥러닝과 AutoML을 이용한 동적모델링)

  • Shin, Yongbeom;Yoo, Sangwoo;Kwak, Dongho;Lee, Nagyeong;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • First principle-based modeling studies have been performed to improve the heat exchange efficiency of ORV and optimize operation, but the heat transfer coefficient of ORV is an irregular system according to time and location, and it undergoes a complex modeling process. In this study, FNN, LSTM, and AutoML-based modeling were performed to confirm the effectiveness of data-based modeling for complex systems. The prediction accuracy indicated high performance in the order of LSTM > AutoML > FNN in MSE. The performance of AutoML, an automatic design method for machine learning models, was superior to developed FNN, and the total time required for model development was 1/15 compared to LSTM, showing the possibility of using AutoML. The prediction of NG and seawater discharged temperatures using LSTM and AutoML showed an error of less than 0.5K. Using the predictive model, real-time optimization of the amount of LNG vaporized that can be processed using ORV in winter is performed, confirming that up to 23.5% of LNG can be additionally processed, and an ORV optimal operation guideline based on the developed dynamic prediction model was presented.

Dam Inflow Prediction and Evaluation Using Hybrid Auto-sklearn Ensemble Model (하이브리드 Auto-sklearn 앙상블 모델을 이용한 댐 유입량 예측 및 평가)

  • Lee, Seoro;Bae, Joo Hyun;Lee, Gwanjae;Yang, Dongseok;Hong, Jiyeong;Kim, Jonggun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.307-307
    • /
    • 2022
  • 최근 기후변화와 댐 상류 토지이용 변화 등과 같은 다양한 원인에 의해 댐 유입량의 변동성이 증가하면서 댐 관리 및 운영조작 의사 결정에 어려움이 발생하고 있다. 따라서 이러한 댐 유입량의 변동 특성을 반영하여 댐 유입량을 정확하고 효율적으로 예측할 수 있는 방안이 필요한 실정이다. 머신러닝 기술이 발전하면서 Auto-ML(Automated Machine Learning)이 다양한 분야에서 활용되고 있다. Auto-ML은 데이터 전처리, 최적 알고리즘 선택, 하이퍼파라미터 튜닝, 모델 학습 및 평가 등의 모든 과정을 자동화하는 기술이다. 그러나 아직까지 수문 분야에서 댐 유입량을 예측하기 위한 모델을 개발하는데 있어서 Auto-ML을 활용한 사례는 부족하고, 특히 댐 유입량의 예측 정확성을 확보하기 위해 High-inflow and low-inflow 의 변동 특성을 고려한 하이브리드 결합 방식을 통해 Auto-ML 기반 앙상블 모델을 개발하고 평가한 연구는 없다. 본 연구에서는 Auto-ML의 패키지 중 Auto-sklearn을 통해 홍수기, 비홍수기 유입량 변동 특성을 반영한 하이브리드 앙상블 댐 유입량 예측 모델을 개발하였다. 소양강댐을 대상으로 적용한 결과, 하이브리드 Auto-sklearn 앙상블 모델의 댐 유입량 예측 성능은 R2 0.868, RMSE 66.23 m3/s, MAE 16.45 m3/s로 단일 Auto-sklearn을 통해 구축 된 앙상블 모델보다 전반적으로 우수한 것으로 나타났다. 특히 FDC (Flow Duration Curve)의 저수기, 갈수기 구간에서 두 모델의 유입량 예측 경향은 큰 차이를 보였으며, 하이브리드 Auto-sklearn 모델의 예측 값이 관측 값과 더욱 유사한 것으로 나타났다. 이는 홍수기, 비홍수기 구간에 대한 앙상블 모델이 독립적으로 구축되는 과정에서 각 모델에 대한 하이퍼파라미터가 최적화되었기 때문이라 판단된다. 향후 본 연구의 방법론은 보다 정확한 댐 유입량 예측 자료를 생성하기 위한 방안 수립뿐만 아니라 다양한 분야의 불균형한 데이터셋을 이용한 앙상블 모델을 구축하는데도 유용하게 활용될 수 있을 것으로 사료된다.

  • PDF

Applicability Evaluation of Automated Machine Learning and Deep Neural Networks for Arctic Sea Ice Surface Temperature Estimation (북극 해빙표면온도 산출을 위한 Automated Machine Learning과 Deep Neural Network의 적용성 평가)

  • Sungwoo Park;Noh-Hun Seong;Suyoung Sim;Daeseong Jung;Jongho Woo;Nayeon Kim;Honghee Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1491-1495
    • /
    • 2023
  • This study utilized automated machine learning (AutoML) to calculate Arctic ice surface temperature (IST). AutoML-derived IST exhibited a strong correlation coefficient (R) of 0.97 and a root mean squared error (RMSE) of 2.51K. Comparative analysis with deep neural network (DNN) models revealed that AutoML IST demonstrated good accuracy, particularly when compared to Moderate Resolution Imaging Spectroradiometer (MODIS) IST and ice mass balance (IMB) buoy IST. These findings underscore the effectiveness of AutoML in enhancing IST estimation accuracy under challenging polar conditions.

AutoML and CNN-based Soft-voting Ensemble Classification Model For Road Traffic Emerging Risk Detection (도로교통 이머징 리스크 탐지를 위한 AutoML과 CNN 기반 소프트 보팅 앙상블 분류 모델)

  • Jeon, Byeong-Uk;Kang, Ji-Soo;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.14-20
    • /
    • 2021
  • Most accidents caused by road icing in winter lead to major accidents. Because it is difficult for the driver to detect the road icing in advance. In this work, we study how to accurately detect road traffic emerging risk using AutoML and CNN's ensemble model that use both structured and unstructured data. We train CNN-based road traffic emerging risk classification model using images that are unstructured data and AutoML-based road traffic emerging risk classification model using weather data that is structured data, respectively. After that the ensemble model is designed to complement the CNN-based classification model by inputting probability values derived from of each models. Through this, improves road traffic emerging risk classification performance and alerts drivers more accurately and quickly to enable safe driving.

Development of Big Data and AutoML Platforms for Smart Plants (스마트 플랜트를 위한 빅데이터 및 AutoML 플랫폼 개발)

  • Jin-Young Kang;Byeong-Seok Jeong
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.83-95
    • /
    • 2023
  • Big data analytics and AI play a critical role in the development of smart plants. This study presents a big data platform for plant data and an 'AutoML platform' for AI-based plant O&M(Operation and Maintenance). The big data platform collects, processes and stores large volumes of data generated in plants using Hadoop, Spark, and Kafka. The AutoML platform is a machine learning automation system aimed at constructing predictive models for equipment prognostics and process optimization in plants. The developed platforms configures a data pipeline considering compatibility with existing plant OISs(Operation Information Systems) and employs a web-based GUI to enhance both accessibility and convenience for users. Also, it has functions to load user-customizable modules into data processing and learning algorithms, which increases process flexibility. This paper demonstrates the operation of the platforms for a specific process of an oil company in Korea and presents an example of an effective data utilization platform for smart plants.

A study on data collection environment and analysis using virtual server hosting of Azure cloud platform (Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구)

  • Lee, Jaekyu;Cho, Inpyo;Lee, Sangyub
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

Web Attack Classification via WAF Log Analysis: AutoML, CNN, RNN, ALBERT (웹 방화벽 로그 분석을 통한 공격 분류: AutoML, CNN, RNN, ALBERT)

  • Youngbok Jo;Jaewoo Park;Mee Lan Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.587-596
    • /
    • 2024
  • Cyber Attack and Cyber Threat are getting confused and evolved. Therefore, using AI(Artificial Intelligence), which is the most important technology in Fourth Industry Revolution, to build a Cyber Threat Detection System is getting important. Especially, Government's SOC(Security Operation Center) is highly interested in using AI to build SOAR(Security Orchestration, Automation and Response) Solution to predict and build CTI(Cyber Threat Intelligence). In this thesis, We introduce the Cyber Threat Detection System by analyzing Network Traffic and Web Application Firewall(WAF) Log data. Additionally, we apply the well-known TF-IDF(Term Frequency-Inverse Document Frequency) method and AutoML technology to classify Web traffic attack type.

An AutoML-driven Antenna Performance Prediction Model in the Autonomous Driving Radar Manufacturing Process

  • So-Hyang Bak;Kwanghoon Pio Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3330-3344
    • /
    • 2023
  • This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.

Hyperparameter Search for Facies Classification with Bayesian Optimization (베이지안 최적화를 이용한 암상 분류 모델의 하이퍼 파라미터 탐색)

  • Choi, Yonguk;Yoon, Daeung;Choi, Junhwan;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.157-167
    • /
    • 2020
  • With the recent advancement of computer hardware and the contribution of open source libraries to facilitate access to artificial intelligence technology, the use of machine learning (ML) and deep learning (DL) technologies in various fields of exploration geophysics has increased. In addition, ML researchers have developed complex algorithms to improve the inference accuracy of various tasks such as image, video, voice, and natural language processing, and now they are expanding their interests into the field of automatic machine learning (AutoML). AutoML can be divided into three areas: feature engineering, architecture search, and hyperparameter search. Among them, this paper focuses on hyperparamter search with Bayesian optimization, and applies it to the problem of facies classification using seismic data and well logs. The effectiveness of the Bayesian optimization technique has been demonstrated using Vincent field data by comparing with the results of the random search technique.