• Title/Summary/Keyword: auto-identification

Search Result 176, Processing Time 0.047 seconds

The study for improve a method of Marker auto- identification (마커 자동 인식 향상 방법에 관한 연구)

  • Lee, Hyun-Seob
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.23-38
    • /
    • 2003
  • The purpose of this study is to develop an improved marker auto-identification algorithm for reduce of data processing time through improve the efficiency of noise elimination and marker separation. The maker auto-identification algorithm was programming named KUMAS used Delphi language. For the study, various experiments were conducted for the verification of KUMAS. and compared two systems of established with the KUMAS. Four different motions - cycling, gait, rotation, and pendulum -, were selected and tested. Motions were filmed 30Hz frames rate per second. ${\chi}^2$ used for statistical analysis. Significant level were ${\alpha}=.05$. The test results were as follow. 1. Increased the success ratio of marker auto-identification. 2. The efficiency of marker auto-identification was remarkably improved through marker separation, noise elimination. 3. The marker auto-identification ability was improved in 2D-image plane include the 3D motion. 4. Significant different were found between KUMAS and B-SYS(established system) with non-input the artificial noise frames, input the artificial noise frames and total frames.

System identification method for the auto-tuning of power plant control system with time delay (시간지연을 가진 발전소 제어시스템의 자동동조를 위한 System identification 방법)

  • 윤명현;신창훈;박익수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1008-1011
    • /
    • 1996
  • Most control systems of power plants are using classical PID controllers for their process control. In order to get the desired control performances, the correct tuning of PID controllers is very important. Sometimes, it is necessary to retune PID controllers after the change of system operating condition and system design change, etc. Commercial auto-tuning controllers such as relay feedback controller can be used for this purpose. However, using these controllers to the safety-critical systems of nuclear power plants may be cause of unsafe operation, because they are using test signals for tuning. A new system identification auto-tuning method without using test signal has been developed in this paper. This method uses process input/output signals for system identification of unknown control process. From the model information of control process which was obtained from system identification approach, the optimal PID parameters can be calculated. The method can be used in the safety-critical systems because it is not using test signals during system modeling process.

  • PDF

Improved Correlation Identification of Subsurface Using All Phase FFT Algorithm

  • Zhang, Qiaodan;Hao, Kaixue;Li, Mei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.495-513
    • /
    • 2020
  • The correlation identification of the subsurface is a novel electrical prospecting method which could suppress stochastic noise. This method is increasingly being utilized by geophysicists. It achieves the frequency response of the underground media through division of the cross spectrum of the input & output signal and the auto spectrum of the input signal. This is subject to the spectral leakage when the cross spectrum and the auto spectrum are computed from cross correlation and autocorrelation function by Discrete Fourier Transformation (DFT, "To obtain an accurate frequency response of the earth system, we propose an improved correlation identification method which uses all phase Fast Fourier Transform (APFFT) to acquire the cross spectrum and the auto spectrum. Simulation and engineering application results show that compared to existing correlation identification algorithm the new approach demonstrates more precise frequency response, especially the phase response of the system under identification.

Development of an Auto Sample Centering Algorithm at the Macromolecular Crystallography Beam Line of the Pohang Light Source (단백질 결정학 빔 라인에서의 자동 샘플 정렬 알고리즘 개발)

  • Jang, Yu-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.313-318
    • /
    • 2006
  • An automatic sample centering system is underway at the protein crystallography beam line of the Pohang Light Source to improve the efficiency of the crystal screening process. A sample pin which contains a protein crystal is mounted on a goniometer head. Then the crystal should be moved to the center of X-ray beam by controlling the motorized goniometer to obtain diffraction data. Since the X-ray beam is located at the center of the image obtained from the CCD camera when the image of the sample pin is in focus, an auto-focusing algorithm is a very important part in the auto-sample-centering system. However the results of applying several well-known auto focusing algorithms directly to the images are not satisfactory owing to the following factors: misalignment of CCD camera, non-uniform cryo-stream in the background of the image and the supporter of the loop. The performance of an auto-focusing algorithm can be increased if the algorithm is applied to only the loop region identified. Non-uniform cryo-stream and a various illumination condition and a stain, which is shown in the image, are main obstacles to loop region identification. In this paper, a simple loop region identification algorithm, which can solve these problems, is proposed and the effective ness of the proposed scheme is shown by applying the auto-focusing algorithm to the loop region identified.

FUZZY IDENTIFICATION BY MEANS OF AUTO-TUNING ALGORITHM AND WEIGHTING FACTOR

  • Park, Chun-Seong;Oh, Sung-Kwun;Ahn, Tae-Chon;Pedrycz, Witold
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.701-706
    • /
    • 1998
  • A design method of rule -based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of " IF..., THEN,," statements. using the theories of optimization and linguistic fuzzy implication rules. The improved complex method, which is a powerful auto-tuning algorithm, is used for tuning of parameters of the premise membership functions in consideration of the overall structure of fuzzy rules. The optimized objective function, including the weighting factors, is auto-tuned for better performance of fuzzy model using training data and testing data. According to the adjustment of each weighting factor of training and testing data, we can construct the optimal fuzzy model from the objective function. The least square method is utilized for the identification of optimum consequence parameters. Gas furance and a sewage treatment proce s are used to evaluate the performance of the proposed rule-based fuzzy modeling.

  • PDF

Nonlinear System Identification; Comparison of the Traditional and the Neural Networks Approaches (비선형 시스템규명; 신경회로망과 기존방법의 비교)

  • Chong, Kil-To
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.157-165
    • /
    • 1995
  • In this paper the comparison between the neural networks and traditional approaches as nonlinear system identification methods are considered. Two model structures of neural networks are the state space model and the input output model neural networks. The traditional methods are the AutoRegressive eXogeneous Input model and the Nonlinear AutoRegressive eXogeneous Input model. Computer simulation for an analytic dynamic model of a single input single output nonlinear system has been done for all the chosen models. Model validation for the obtained models also has been done with testing inputs of the sinusoidal, ramp and the noise ramp.

  • PDF

Comparison of the traditional and the neural networks approaches

  • Chong, Kil-To;Parlos, Alexander-G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.134-139
    • /
    • 1994
  • In this paper the comparison between the neural networks and traditional approaches as system identification method are considered. Two model structures of neural networks are the state space model and the input output model neural networks. The traditional methods are the AutoRegressive eXogeneous Input model and the Nonlinear AutoRegressive eXogeneous Input model. The examples considered do not represent any physical system, no a priori knowledge concerning their structure has been used in the identification process. Testing inputs for comparison are the sinusoidal, ramp and the noise ramp.

  • PDF

Auto-Tuning PI control using limitted step response for brushless DC motor speed control (브러시리스 직류전동기 속도 제어를 위한 한계스텝응답 특성을 이용한 Auto-tuning PI 제어)

  • 전장현;전인효최중경박승엽
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.203-206
    • /
    • 1998
  • This paper describes the procedure of getting information about auto-tuning of PID regulator by the injection of high step input, called limited input, during a transient time of control. The key point is that system identification and control could be continuously executed. This means that the system information obtained by limited input despite of system uncertainty can be continuously applied to the PI regulator. Simulation and experiment result of brushless DC motor system having monotone increasing step response demonstrate the usefulness of proposed auto-tuning algorithm.

  • PDF

Fault Detection in an Automatic Central Air-Handling Unit (자동 공조설비의 고장 검출 기술)

  • Lee, Won-Yong;Shin, Dong-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.410-418
    • /
    • 1999
  • This paper describes the use of residual and parameter identification methods for fault detection in an air handling unit. Faults can be detected by comparing expected condition with the measured faulty data using residuals. Faults can also be detected by examining unmeasurable parameter changes in a model of a controlled system using a system identification technique. In this study, AutoRegressive Moving Average with seXtrnal input(ARMAX) and AutoRegressive with eXternal input(ARX) models with both single-input/single-input and multi-input/single-input structures are examined. Model parameters are determined using the Kalman filter recursive identification method. Regression equations are calculated from normal experimental data and are used to compute expected operating variables. These approaches are tested using experimental data from a laboratory's variable-air-volume air-handling-unit.

  • PDF

Auto-tuning of PID/PIDA Controllers based on Step-response (스텝응답에 기반한 PID/PIDA 제어기의 자동동조)

  • Ahn, Kyung-Pil;Lee, Jun-Sung;Lim, Jae-Sik;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.974-981
    • /
    • 2009
  • In this paper, a method of auto-tuning of PID (Proportional-Integral-Derivative) and PIDA (Proportional-Integral-Derivative-Acceleration) controllers is proposed that can be applied to a time-delayed second order model. The proposed identification method is based on step responses, but it can be easily automated rising digital controller unlike the existing graphical identification methods. We provide a ways to yield parameter identifications which is independent to initial values of the plants. The tuning rule is based on the pole-placement strategy and is formulated so that it can be implemented using a digital controller with ease.