• Title/Summary/Keyword: auto-correlated process control

Search Result 5, Processing Time 0.016 seconds

Design of Acceptance Control Charts According to the Process Independence, Data Weighting Scheme, Subgrouping, and Use of Charts (프로세스의 독립성, 데이터 가중치 체계, 부분군 형성과 관리도 용도에 따른 합격판정 관리도의 설계)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.257-262
    • /
    • 2010
  • The study investigates the various Acceptance Control Charts (ACCs) based on the factors that include process independence, data weighting scheme, subgrouping, and use of control charts. USL - LSL > $6{\sigma}$ that used in the good condition processes in the ACCs are designed by considering user's perspective, producer's perspective and both perspectives. ACCs developed from the research is efficiently applied by using the simple control limit unified with APL (Acceptable Process Level), RLP (Rejectable Process Level), Type I Error $\alpha$, and Type II Error $\beta$. Sampling interval of subgroup examines i.i.d. (Identically and Independent Distributed) or auto-correlated processes. Three types of weight schemes according to the reliability of data include Shewhart, Moving Average(MA) and Exponentially Weighted Moving Average (EWMA) which are considered when designing ACCs. Two types of control charts by the purpose of improvement are also presented. Overall, $\alpha$, $\beta$ and APL for nonconforming proportion and RPL of claim proportion can be designed by practioners who emphasize productivity and claim defense cost.

A CUSUM Chart for Detecting Mean Shifts of Oscillating Pattern (진동 패턴의 평균 변화 탐지를 위한 누적합 관리도)

  • Lee, Jae-June;Kim, Duk-Rae;Lee, Jong-Seon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1191-1201
    • /
    • 2009
  • The cumulative sum(CUSUM) control charts are typically used for detecting small level shifts in process control. To control an auto-correlated process, the model-based control methods can be employed, in which the residuals from fitting a time series model are applied to the CUSUM chart. However, the persistent level shifts in the original process may lead to varying mean shifts in residuals, which may deteriorate detection performance significantly. Therefore, in this paper, focussing on ARMA(1,1), we propose a new CUSUM type control method which can detect the dynamic mean shifts in residuals especially with oscillating pattern effectively and, through the simulation study, evaluate its performance by comparing with other various CUSUM type control methods introduced so far.

Multivariate CUSUM Chart to Monitor Correlated Multivariate Time-series Observations (상관된 시계열 자료 모니터링을 위한 다변량 누적합 관리도)

  • Lee, Kyu Young;Lee, Mi Lim
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.539-550
    • /
    • 2021
  • Purpose: The purpose of this study is to propose a multivariate CUSUM control chart that can detect the out-of-control state fast while monitoring the cross- and auto- correlated multivariate time series data. Methods: We first build models to estimate the observation data and calculate the corresponding residuals. After then, a multivariate CUSUM chart is applied to monitor the residuals instead of the original raw observation data. Vector Autoregression and Artificial Neural Net are selected for the modelling, and Separated-MCUSUM chart is selected for the monitoring. The suggested methods are tested under a number of experimental settings and the performances are compared with those of other existing methods. Results: We find that Artificial Neural Net is more appropriate than Vector Autoregression for the modelling and show the combination of Separated-MCUSUM with Artificial Neural Net outperforms the other alternatives considered in this paper. Conclusion: The suggested chart has many advantages. It can monitor the complicated multivariate data with cross- and auto- correlation, and detects the out-of-control state fast. Unlike other CUSUM charts finding their control limits by trial and error simulation, the suggested chart saves lots of time and effort by approximating its control limit mathematically. We expect that the suggested chart performs not only effectively but also efficiently for monitoring the process with complicated correlations and frequently-changed parameters.

Power Enhanced Design of Robust Control Charts for Autocorrelated Processes : Application on Sensor Data in Semiconductor Manufacturing (검출력 향상된 자기상관 공정용 관리도의 강건 설계 : 반도체 공정설비 센서데이터 응용)

  • Lee, Hyun-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.57-65
    • /
    • 2011
  • Monitoring auto correlated processes is prevalent in recent manufacturing environments. As a proactive control for manufacturing processes is emphasized especially in the semiconductor industry, it is natural to monitor real-time status of equipment through sensor rather than resultant output status of the processes. Equipment's sensor data show various forms of correlation features. Among them, considerable amount of sensor data, statistically autocorrelated, is well represented by Box-Jenkins autoregressive moving average (ARMA) model. In this paper, we present a design method of statistical process control (SPC) used for monitoring processes represented by the ARMA model. The proposed method shows benefits in the power of detecting process changes, and considers robustness to ARMA modeling errors simultaneously. We prove benefits through Monte carlo simulation-based investigations.

Portfolio Management Using Statistical Process Control Chart (SPC 차트를 이용한 포트폴리오 관리)

  • Kim, Dong-Sup;Ryoo, Hong-Seo
    • IE interfaces
    • /
    • v.20 no.2
    • /
    • pp.94-102
    • /
    • 2007
  • Portfolio management deals with decision making on 'when' and 'how' to revise an existing portfolio. In this paper, we show that a classical statistical process control (SPC) chart for normal data, a wellestablished tool in quality engineering, can effectively be used for signaling times for revising a portfolio. Noting that the day-to-day performance of a portfolio may be auto-correlated, we use the exponentially weighted moving average center-line chart to develop an automatic portfolio management procedure. The portfolio management procedure is extensively tested on historical data of equities traded in the Korea Exchange (KRX), the American Stock Exchange (AMEX), and the New York Stock Exchange (NYSE). In comparison with the performances of the KOSPI, XAX, and NYA indices during the same time periods, results from these experiments show that SPC chart-based portfolio revision presents itself a convenient and reliable method for optimally managing portfolios.