• Title/Summary/Keyword: augmented lagrange multiplier

Search Result 28, Processing Time 0.022 seconds

Optimum Shape for Buckling and Post-Buckling Behavior of a Laminated Composite Panel with I-type Stiffeners

  • Lee, Gwang-Rog;Yang, Won-Ho;Sub, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1211-1221
    • /
    • 2002
  • A shape optimization of stiffener was conducted to increase buckling load or failure load with stiffened laminated composite panel of I-type under compression loading. Design variables are cap length, web length, and/or thickness under the constraint of volume constancy. The objective function is buckling load and failure load of post-buckling based on Tsai-Hill theory using ABAQUS 5.8 for analysis and Optimizer on Broydon-Fletcher Goldfarb-Sharno Method and Augmented Lagrange Multiplier Method. The effects of relative length of a web and a cap of stiffener on buckling load and failure load of post-buckling were investigated with the results of optimum design.

Analysis of Static and Dynamic Frictional Contact of Deformable Bodies Including Large Rotations of the Contact Surfaces

  • Lee, Kisu
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1276-1286
    • /
    • 2002
  • The numerical techniques are presented to solve the static and dynamic contact problems of deformable bodies having large rotations of the contact surfaces. The contact conditions on the possible contact surfaces are enforced by using the contact error vector, and an iterative scheme similar to augmented Lagrange multiplier method is employed to reduce the contact error vector monotonically. For dynamic contact problems using implicit time integration, a contact error vector is also defined by combining the displacement, velocity, and acceleration on the contact surface. The suggested iterative technique is implemented to ABAQUS by using the UEL subroutine UEL. In this work, after the computing procedures to solve the frictional contact problems are explained, the numerical examples are presented to compare the present solutions with those obtained by ABAQUS.

Analysis of Valvetrain Dynamics of an Internal Combustion Engine with Elastic Deformation of the Components (부품의 탄성변형을 고려한 내연기관 밸브트레인 동역학 해석)

  • Lee, Ki-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.63-71
    • /
    • 2009
  • The elastic effects of the valve train components are analyzed by using the finite element models of the rocker arm and valve. The whole equations of motion of the valvetrain of an internal combustion engine formulated by finite element techniques are solved by imposing the contact conditions with the augmented Lagrange multiplier method. The velocity and acceleration constraints as well as the displacement constraints are imposed on the contact points. The numerical simulations show that, even if the magnitude of the elastic deformation of the components is very small, it may have large effects on the valvetrain dynamics of a high-speed engine.

A Flying State Analysis of HDD Head Slider by Using An Optimization Technique (최적화 기법을 이용한 HDD용 헤드 슬라이더의 부상상태 해석)

  • 윤상준;김존관;최동훈;이재헌;김광식
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.26-34
    • /
    • 1992
  • This paper suggests a method to predict the flying state of the head slider in a hard disk drive (HDD) by using an optimization technique. The modified Reynolds equation for the hydrodynamic lubrication theory under the slip flow condition is used to describe the air-bearing system and a Finite Volume Method (FVM) is applied to solve the equation. Especially, Augmented Lagrange Multiplier (ALM) method is employed to find the minimum flying height, the pitch angle and the roll angle of the slider, which is shown to be faster and more general than the conventional update schemes. By using the proposed method, the variations of the flying state are analyzed as a function of the slider position in the direction of the disk radius for various disk velocities and skew angles.

An Optimum Design of a Rotor-Bearing Spindle System for a Ultra Centrifuge (초고속 원심분리 회전축계의 최적설계)

  • 김종립;윤기찬;박종권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.145-152
    • /
    • 1998
  • This paper presents an optimum design of a rotor-bearing spindle system for a ultra centrifuge (80,000 RPM) supported by ball bearings with nonlinear stiffness characteristics. To obtain the nonlinear bearing stiffnesses, a ball bearing is modeled in five degrees of freedom and is analyzed quasi-statically. The dynamic behaviors of the nonlinear rotor-bearing system are analyzed by using a transfer-matrix method iteratively. For optimization. we use the cost function that simultaneously minimizes the weight of a rotor and maximizes the separation margins to yield the critical speeds as far from the operating speed as possible. Augmented Lagrange Multiplier (ALM) method is employed for the nonlinear optimization problem. The result shows that the rotor-bearing spindle system is optimized to obtain 9.5% weight reduction and 21% separation margin.

  • PDF

Analysis of Dynamic Contact and Stress of a Valve in Internal Combustion Engine (내연기관 밸브의 동적 접촉 및 응력 해석)

  • 이기수;김동우;박상호;조성호;김방원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.159-165
    • /
    • 2002
  • Numerical analysis of dynamic contact and stress developing in the high-speed driven valve of an internal combustion engine is presented. The valve is modeled by finite element techniques, and the dynamic contact between the valve and the valve seat is analyzed by the solution strategies of differential algebraic equations. Also an iterative scheme similar to the augmented Lagrange multiplier method is employed to enforce the contact constraints. It is shown that the contact and separation between the valve and the valve seat can be computed by the finite element techniques without assuming the artificial springs, and the efficiency and accuracy of the solution are demonstrated by the numerical examples.

Numerical Analysis for Valve Train Dynamics of an Internal Combustion Engine (내연기관 밸브 트레인 동역학의 수치해석)

  • 이기수;김동우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2003
  • Numerical analysis for valve train dynamics of an internal combustion engine is presented. The components of the valve train are modeled by finite element techniques, and the dynamic contacts between the components are analyzed by the solution strategies of differential algebraic equations. Also an iterative scheme similar to the augmented Lagrange multiplier method is employed to enforce the contact constraints. It is shown that the contact and separation between the components of the valve train can be computed by the finite element techniques, and the numerical examples are presented to demonstrate the efficiency of the solution.

New Transistor Sizing Algorithms For CMOS Digital Designs (CMOS 디지틀 설계를 위한 트랜지스터 크기의 최적화기법)

  • 이상헌;김경호;박송배
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.3
    • /
    • pp.68-76
    • /
    • 1994
  • In the automatic transistor sizing with computer for optimizing delay and the chip area of CMOS digital circuits, conventionally either a mathematical method or a heuristic method has been used. In this paper, we present a new method of transistor sizing, a sort of combination of the above two methods, in which the mathematical method is used for sizing of critical paths and the heuristic method is used for desizing of non-critical paths. In order to reduce the overall problem dimension, a basic block called an extended stage is introduced which includes a basic stage, parallel transistors and complementary part. Optimization for multiple critical paths is formulated as a problem of area minimization subject to delay constraints and is solved by the augmented Lagrange multiplier method. The transistor sizes along non-critical paths are decreased successively without affecting the critical path delay times. The proposed scheme was successfully applied to several test circuits.

  • PDF

Development of An Optimal Design Program for Open-Chain Dynamic Systems (불구속연쇄 동적시스템을 위한 최적설계 프로그램 개발)

  • 최동훈;한창수;이동수;서문석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.12-23
    • /
    • 1994
  • This paper proposes an optimal design software for the open-chain dynamic systems whose governing equations are expressed as differential equation. In this software, an input module and an automatic creation module of the equation of motion are developed to contrive the user's convenience. To analyze the equation of motion of the dynamic systems, variable-order and variable-stepsize Adams-Bashforth-Moulton predictor-corrector method is used to improve the efficiency. For the optimization and the design sensitivity analysis, ALM(augmented lagrange multiplier)method and adjoint variable method are adopted respectively. An output module with which the user can compare and investigate the analysis and the optimization results through tables and graphs is also provided. The developed software is applied to three typical dynamic response optimization problems, and the results compare very well with those available in the literature, demonstrating its effectiveness.

Optimal shape design of contact systems

  • Mahmoud, F.F.;El-Shafei, A.G.;Al-Saeed, M.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.155-180
    • /
    • 2006
  • Many applications in mechanical design involve elastic bodies coming into contact under the action of the applied load. The distribution of the contact pressure throughout the contact interface plays an important role in the performance of the contact system. In many applications, it is desirable to minimize the maximum contact pressure or to have an approximately uniform contact pressure distribution. Such requirements can be attained through a proper design of the initial surfaces of the contacting bodies. This problem involves a combination of two disciplines, contact mechanics and shape optimization. Therefore, the objective of the present paper is to develop an integrated procedure capable of evaluating the optimal shape of contacting bodies. The adaptive incremental convex programming method is adopted to solve the contact problem, while the augmented Lagrange multiplier method is used to control the shape optimization procedure. Further, to accommodate the manufacturing requirements, surface parameterization is considered. The proposed procedure is applied to a couple of problems, with different geometry and boundary conditions, to demonstrate the efficiency and versatility of the proposed procedure.