KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.7
/
pp.2286-2304
/
2022
Blockchain is a distributed ledger that combines technologies such as cryptography, consensus mechanism, peer-to-peer transmission, and time stamping. The rapid development of blockchain has attracted attention from all walks of life, but storage scalability issues have hindered the application of blockchain. In this paper, a scalable blockchain storage model based on Distributed Hash Table (DHT) and the InterPlanetary File System (IPFS) was proposed. This paper introduces the current research status of the scalable blockchain storage model, as well as the basic principles of DHT and the InterPlanetary File System. The model construction and workflow are explained in detail. At the same time, the DHT network construction mechanism, block heat identification mechanism, new node initialization mechanism, and block data read and write mechanism in the model are described in detail. Experimental results show that this model can reduce the storage burden of nodes, and at the same time, the blockchain network can accommodate more local blocks under the same block height.
In this paper, we propose a novel method of denoising human motion using a bidirectional recurrent neural network (BRNN) with an attention mechanism. The corrupted motion captured from a single 3D depth sensor camera is automatically fixed in the well-established smooth motion manifold. Incorporating an attention mechanism into BRNN achieves better optimization results and higher accuracy than other deep learning frameworks because a higher weight value is selectively given to a more important input pose at a specific frame for encoding the input motion. Experimental results show that our approach effectively handles various types of motion and noise, and we believe that our method can sufficiently be used in motion capture applications as a post-processing step after capturing human motion.
Target signal of passive sonar shows narrow band harmonic characteristic with a variation in intensity within a few seconds and long term frequency variation due to the Lloyd's mirror effect. We propose a signal classification algorithm based on Gated Recurrent Unit (GRU) that learns local and global time series features. The algorithm proposed implements a multi layer network using GRU and extracts local and global time series features via dilated connections. We learns attention mechanism to weight time series features and classify passive sonar signals. In experiments using public underwater acoustic data, the proposed network showed superior classification accuracy of 96.50 %. This result is 4.17 % higher classification accuracy compared to existing skip connected GRU network.
Enoch A. Frimpong;Zhiguang Qin;Regina E. Turkson;Bernard M. Cobbinah;Edward Y. Baagyere;Edwin K. Tenagyei
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.11
/
pp.2924-2944
/
2023
Alzheimer's disease (AD) is a neurological condition that is recognized as one of the primary causes of memory loss. AD currently has no cure. Therefore, the need to develop an efficient model with high precision for timely detection of the disease is very essential. When AD is detected early, treatment would be most likely successful. The most often utilized indicators for AD identification are the Mini-mental state examination (MMSE), and the clinical dementia. However, the use of these indicators as ground truth marking could be imprecise for AD detection. Researchers have proposed several computer-aided frameworks and lately, the supervised model is mostly used. In this study, we propose a novel 3D Convolutional Neural Network Multilayer Perceptron (3D CNN-MLP) based model for AD classification. The model uses Attention Mechanism to automatically extract relevant features from Magnetic Resonance Images (MRI) to generate probability maps which serves as input for the MLP classifier. Three MRI scan categories were considered, thus AD dementia patients, Mild Cognitive Impairment patients (MCI), and Normal Control (NC) or healthy patients. The performance of the model is assessed by comparing basic CNN, VGG16, DenseNet models, and other state of the art works. The models were adjusted to fit the 3D images before the comparison was done. Our model exhibited excellent classification performance, with an accuracy of 91.27% for AD and NC, 80.85% for MCI and NC, and 87.34% for AD and MCI.
Hanil Ryoo;Sang Hun Lee;Deok Jai Choi;Hyuk Ro Park
Smart Media Journal
/
v.12
no.11
/
pp.103-112
/
2023
Recently, the need to prevent battery fires and accidents has emerged, as the use of lithium-ion batteries has increased. In order to prevent accidents, it is necessary to predict the state of health (SOH) and check the replacement timing of the battery with a lot of degradation. This paper proposes a model for predicting the degradation state of a battery by using four battery degradation indicators: maximum voltage arrival time, current change time, maximum temperature arrival time, and incremental capacity (IC) that can be obtained in the battery charging process, and LSTM using an attention mechanism. The performance of the proposed model was measured using the NASA battery data set, and the predictive performance was improved compared to that of the general LSTM model, especially in the SOH 90-70% section, which is close to the battery replacement cycle.
Speech enhancement used to improve the perceptual quality and intelligibility of noise speech has been studied as a method using a complex-valued spectrum that can improve both magnitude and phase in a method using a magnitude spectrum. In this paper, a study was conducted on how to apply attention mechanism to complex-valued spectrum-based speech enhancement systems to further improve the intelligibility and quality of noise speech. The attention is performed based on additive attention and allows the attention weight to be calculated in consideration of the complex-valued spectrum. In addition, the global average pooling was used to consider the importance of the feature map. Complex-valued spectrum-based speech enhancement was performed based on the Deep Complex U-Net (DCUNET) model, and additive attention was conducted based on the proposed method in the Attention U-Net model. The results of the experiments on noise speech in a living room environment showed that the proposed method is improved performance over the baseline model according to evaluation metrics such as Source to Distortion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ), and Short Time Object Intelligence (STOI), and consistently improved performance across various background noise environments and low Signal-to-Noise Ratio (SNR) conditions. Through this, the proposed speech enhancement system demonstrated its effectiveness in improving the intelligibility and quality of noisy speech.
Recently, followed by rapid growth of robotics field, multi-linkage mechanism which can even pass by rough road is getting lots of attention. In this paper, I focused on Jansen mechanism. It's a kinematics object which is named after Dutch artist Theo jansen. Jansen mechanism embraces structure and mechanism which creates locomotion with the combination of the power and simple structure. Theo jansen suggests a 'Holy number'. It's an ideal ratio of leg components length. However, if there's desired gait locomotion, you have to adjust the ratio and the length. But even slight change of the length could cause a big change at the end-point. To solve this problem, I suggest a reverse engineering method to get a ratio of each links by nonlinear optimization with pre-set desired trajectory. First, we converted a movement of the joint of Jansen mechanism to vectors by kinematics analysis of multi-linkage structure. And we showed the trajectory at the end-point. After that, we set desired trajectory which we found most ideal. Then we got the length of the leg components which draws a trajectory as same as trajectory we set, using Multi-objective genetic algorithm toolbox in MATLAB. Result is verified by Edison designer and mSketch. And we analyzed if it could pass through the obstruction which is set dynamically.
With the fast growth of Internet and a new widespread interest in optical networks, the unparalleled potential of Multi-Protocol Label Switching (MPLS) is leading to further research and development efforts. One of those areas of research is Path Protection Mechanism. It is widely accepted that layer three protection and recovery mechanisms are too slow for today’s reliability requirements. Failure recovery latencies ranging from several seconds to minutes, for layer three routing protocols, have been widely reported. For this reason, a recovery mechanism at the MPLS layer capable of recovering from failed paths in 10’s of milliseconds has been sought. In light of this, several MPLS based protection mechanisms have been proposed, such as end-to-end path protection and local repair mechanism. Those mechanisms are designed for intra-domain recoveries and little or no attention has been given to the case of non-homogenous independent inter-domains. This paper presents a novel solution for the setup and maintenance of independent protection mechanisms within individual domains and merged at the domain boundaries. This innovative solution offers significant advantages including fast recovery across multiple nonhomogeneous domains and high scalability. Detailed setup and operation procedures are described. Finally, simulation results using OPNET are presented showing recovery times of a few milliseconds.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.10
/
pp.4977-4996
/
2016
The existence of excessively large and too filled network buffers, known as bufferbloat, has recently gained attention as a major performance problem for delay-sensitive applications. Researchers have made three types of suggestions to solve the bufferbloat problem. One is End to End (E2E) congestion control, second is deployment of Active Queue Management (AQM) techniques and third is the combination of above two. However, these solutions either seem impractical or could not obtain good bandwidth utilization. In this paper, we propose a Transmission Control Protocol(TCP)delayed window update mechanism which uses a congestion detection approach to predict the congestion level of networks. When detecting the network congestion is coming, a delayed window update control strategy is adopted to maintain good protocol performance. If the network is non-congested, the mechanism stops work and congestion window is updated based on the original protocol. The simulation experiments are conducted on both high bandwidth and long delay scenario and low bandwidth and short delay scenario. Experiment results show that TCP delayed window update mechanism can effectively improve the performance of the original protocol, decreasing packet losses and queuing delay while guaranteeing transmission efficiency of the whole network. In addition, it can perform good fairness and TCP friendliness.
The traffic sign on the road should be easy to distinguishable even from far, and should be recognized in a short time. As traffic sign is a very important object which provides important information for the drivers to enhance safety, it has to attract human's attention among any other objects on the road. This paper proposes a new method of detecting the area of traffic sign, which uses attention module on the assumption that we attention our gaze on the traffic sign at first among other objects when we drive a car. In this paper, we analyze the previous studies of psycophysical and physiological results to get what kind of features are used in the process of human's object recognition, especially color processing, and with these results we detected the area of traffic sign. Various kinds of traffic sign images were tested, and the results showed good quality(average 97.8% success).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.