• Title/Summary/Keyword: attached biomass

Search Result 89, Processing Time 0.028 seconds

Nitrifying Bacterial Community Structure of a Full-Scale Integrated Fixed-Film Activated Sludge Process as Investigated by Pyrosequencing

  • Kim, Taek-Seung;Kim, Han-Shin;Kwon, Soon-Dong;Park, Hee-Deung
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.293-298
    • /
    • 2011
  • Nitrifying bacterial community structures of suspended and attached biomasses in a full-scale integrated fixed-film activated sludge process were investigated by analyzing 16S rRNA gene sequences obtained from pyrosequencing. The suspended biomass had a higher number of ammonia-oxidizing bacterial sequences (0.8% of total sequences) than the attached biomass (0.07%), although most of the sequences were within the Nitrosomonas oligotropha lineage in both biomasses. Nitrospira-like nitrite-oxidizing bacterial sequences were retrieved in the suspended biomass (0.06%), not in the attached biomass, whereas the existence of Nitrobacter-like sequences was not evident. The suspended biomass had higher nitrification activity (1.13 mg N/TSS/h) than the attached biomass (0.07 mg N/TSS/h). Overall, the results made it possible to conclude the importance of the suspended biomass, rather than the attached biomass, in nitrification in the wastewater treatment process studied.

Higher Biomass Productivity of Microalgae in an Attached Growth System, Using Wastewater

  • Lee, Seung-Hoon;Oh, Hee-Mock;Jo, Beom-Ho;Lee, Sang-A;Shin, Sang-Yoon;Kim, Hee-Sik;Lee, Sang-Hyup;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1566-1573
    • /
    • 2014
  • Although most algae cultivation systems are operated in suspended culture, an attached growth system can offer several advantages over suspended systems. Algal cultivation becomes light-limited as the microalgal concentration increases in the suspended system; on the other hand, sunlight penetrates deeper and stronger in attached systems owing to the more transparent water. Such higher availability of sunlight makes it possible to operate a raceway pond deeper than usual, resulting in a higher areal productivity. The attached system achieved 2.8-times higher biomass productivity and total lipid productivity of $9.1g\;m^{-2}day^{-1}$ and $1.9g\;m^{-2}day^{-1}$, respectively, than the suspended system. Biomass productivity can be further increased by optimization of the culture conditions. Moreover, algal biomass harvesting and dewatering were made simpler and cheaper in attached systems, because mesh-type substrates with attached microalgae were easily removed from the culture and the remaining treated wastewater could be discharged directly. When the algal biomass was dewatered using natural sunlight, the palmitic acid (C16:0) content increased by 16% compared with the freeze-drying method. There was no great difference in other fatty acid composition. Therefore, the attached system for algal cultivation is a promising cultivation system for mass biodiesel production.

Characteristics of attach of biomass on PE substratum under anaerobic condition (폴리에틸렌 담체에 부착된 혐기성 생물막 부착 특성)

  • 이승란;김도한;나영수;이창한;박영식;윤태경;송승구
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.327-332
    • /
    • 2002
  • Optical microscope, SEM (Scanning Electron Microscopy) and fluorescent microscope were used for qualitative and morphological studies of the attached biomass on PE (polyethylene) substratum under anaerobic condition. It was shown by the observation of optical microscope that the initial attachment of biomass began in crevices of the surface of PE. The shape and structure of the attached biofilm could be observed by SEM photographs, but species of bacteria were and methanogens were not classified. A large number of methanogenic bacteria were identified on the surface of PE substratum by fluorescence under 480nm of radiation. It was estimated that methanogenic bacteria was also related to initial attachment of biomass under anaerobic condition.

Comparison of Biofilm Removal Characteristics by Chlorine and Monochloramine in Simulated Drinking Water Distribution Pipe (모형 수도관에서 염소와 모노클로라민에 의한 생물막 제거 특성 비교)

  • Park, Se-Keun;Choi, Sung-Chan;Kim, Yeong-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.26-33
    • /
    • 2006
  • This study investigated the characteristics of the biofilm removal by free chlorine or monochloramine. The simulated drinking water distribution pipes on which biofilms had been formed were supplied with tap water containing 0.5, 1.0, 2.0 mg/L of free chlorine or monochloramine residuals. The biofilm removal was characterized by measurement of attached HPC and biomass on pipe surfaces. Chlorine was more effective in both inactivation of attached viable heterotrophic bacteria and removal of biofilm biomass compared to monochloramine. Biofilm matrix was not much eliminated from the surfaces by monochloramine disinfection. Free chlorine residual of 2.0 mg/L was found to be effective in biomass removal. However, biofilm level as low as $10CFU/cm^2$ of attached HPC and $5{\mu}g/cm^2$ of biomass still remained on the surfaces at 2.0 mg/L of chlorine residual. The measurement of biomass appeared to be a useful means in evaluating the characteristics of biofilm removal.

Epiphytic Diatoms of the Reed Plants in Lake Gocheonam

  • Cho, Kyung-Je
    • ALGAE
    • /
    • v.19 no.4
    • /
    • pp.311-320
    • /
    • 2004
  • A great portion of the marginal zone in Lake Gocheonam was covered with reed plants. Algae attached to the reed stems were exclusively composed of diatoms. Sixty-six species of diatoms were encountered in a floral survey. The important species were Nitzschia liebetruthii Rabh., Nitzschia acicularis (Ku¨tz.) W. Sm., Navicula gregaria Donk., Cocconeis placentula var. lineata (Ehr.) V.H. etc. Among the diatom flora, six species - Navicula nivalis Ehr., Navicula recens Lange-B., Nitzschia angustatula Lange-B., Nitzschia compressa (Bail.) Boyer, Nitzschia lanceola var. minutula Grin. and Surirella crumena Bre´b. - were recorded in Korea for the first times. Life forms of the reed-attached diatoms were simply prostrate. The biomass of epiphytic algae ranged from 0.05㎍ chl-$\alpha$ cm$^{-2}$ to 2.32$\mu$g chl-$\alpha$ cm$^{-2}$. The algal biomass of dead stems was higher than that of the living stems, and their flora were rich. The algal biomass reached a maximum in the spring after the death of the reed plants. The reed plants exhibited rich diatom flora and significantly high algal biomass on their stems to have taxonomical and ecological importance in the freshwater.

Effect of Aeration Intensity on the Treatment Efficiency in Submerged Biofilm Process (침지형 생물막공법에 있어서 포기강도가 처리효율에 미치는 영향)

  • 박종웅
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.1
    • /
    • pp.89-96
    • /
    • 1989
  • An aerated submerged biofilm reactor is the reactor in which influent organic substrates are aerobically oxidized by suspended biomass and attached biomass of biofilm grown on the surface of submerged media. The objective of this study was to investigate the effect of aeration intensity on microbial characteristics and treatment efficiency in submerged biofilm process. In the organic loading rate (4.3kg BOD/$m^{3} \cdot day$), biofilm thickness (420-780$\mu$m) and attached biomass(1.79-2.94mg/cm$^{2}$) increased as the aeration intensity increased (2-8m$^{3}$ air/$m^{2} \cdot hr$), but biofilm density decreased (42.25-37.69mg/cm$^{3}$). The minimum aeration intensity for prevention of deposited biomass was 2m$^{3}$ air/$m^{2} \cdot hr$. The minimum dissolved oxygen of 2.5mg/l had to be maintained for improved efficiency.

  • PDF

Performance of Organic Treatment with Shape Modify of Ceramic Support Carrier (담체 모양변화에 따른 유기물 처리 성능 고찰)

  • 박영식;안갑환
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.27-34
    • /
    • 2001
  • This paper discussed the shape effect of ceramic support carrier in order to facilitate biomass immobilization. The shape of ceramic support carrier was modified hollow pipe type into hollow gear type. After seeding, microorganisms were attached in crevices where protection from shear forces or surfaces where easy to contact with support carrier surface. In case of hollow gear type carrier, initial attachment rate was faster than that of hollow pipe type and obtained thick biofilm. Synthetic wastewater(COD:75~880 mg/L, organic loading rate:0.36~4.22 kgCOD/㎥.d) was treated aerobic fixed bed biofilm reactor where 100% of the volume was filled with the ceramic carrier. COD removal efficiency of reactor filled with gear type support carrier was a little high withing 70 days, and then showed similar removal efficiency. It was found that highly loaded operation with up to 4.22 kgCOD/㎥.d was possible in both reactor. Total biomass amounts of pipe type was higher than gear type, however, attached biomass of gear type was higher than that of pipe type.

  • PDF

Distributional Characteristics of Macrofouling Organisms on Ocean-going Ships of the Far East Sea Basin

  • Moshchenko Alexander V.;Zvyagintsev Alexander Yu.
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.323-335
    • /
    • 2001
  • Distribution features of foulers attached on 28 ships of 6 main shipping routes (SR) of the Far East Sea Basin were analyzed using various statistical methods. Collections obtained during 1976-1990 in the expeditions by the Institute of Marine Biology were used for the analyses. Samples were taken from the ships during anchorage by SCUBA diving and from dry-docks of Vladivostok ship-repairing yard. In all cases, the distribution patterns of most animals and algal species showed clear contagious patterns. Total biomass of fouling organisms and biomass of attached animals frequently increased along the horizontal direction of ship hulls, from the stem to the sternpost. Animal and algal species were usually located at different sites of the hulls. According to the increasing floating speed, there was, a clear tendency of the displacement in main fouling biomass from the stem to the stem. Any generalizations and deductions concerning the distribution patterns of the foulers from the same SR ships are not always substantiated, but one may see some similarities of the fouler distributions in many cases. Micro-scale turbulence generated by water flow around a ship hull for the distribution of fouling organisms is discussed.

  • PDF

Evaluation of Biomass of Biofilm and Biodegradation of Dissolved Organic Matter according to Changes of Operation Times and Bed Depths in BAC Process (BAC 공정에서 운전기간 및 여층깊이 변화에 따른 생물막 생체량 및 용존유기물질 생분해 특성 평가)

  • Son, Hyeng-Sik;Jung, Chul-Woo;Choi, Young-Ik;Lee, Gun;Son, Hee-Jong
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1101-1109
    • /
    • 2014
  • In this study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the 12 months of operation. GAC particles and water samples were sampled from four different depths (-5, -25, -50 and -90 cm from surface of GAC bed) and attached biomass were measured with adenosine tri-phosphate (ATP) analysis and heterotrophic plate count (HPC) method. The attached biomass accumulated rapidly on the GAC particles of top layer throughout all levels in the filter during the 160 days (BV 23,000) of operation and maintained a steady-state afterward. During steady-state, biomass (ATP and HPC) concentrations of top layer in the BAC filer were $2.1{\mu}g{\cdot}ATP/g{\cdot}GAC$ and $3.3{\times}10^8cells/g{\cdot}GAC$, and 85%, 83% and 99% of the influent total biodegradable dissolved organic carbon ($BDOC_{total}$), $BDOC_{slow}$ and $BDOC_{rapid}$ were removed, respectively. During steady-state process, biomass (ATP and HPC) concentrations of middle layer (-50 cm) and bottom layer (-90 cm) in the BAC filter were increased consistently. Biofilm development (growth rate) proceed highest rate in the top layer of filter (${\mu}_{ATP}=0.73day^{-1}$; ${\mu}_{HPC}=1,74day^{-1}$) and 78%~87% slower in the bottom layer (${\mu}_{ATP}=0.14day^{-1}$; ${\mu}_{HPC}=0.34day^{-1}$). This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilter.

Stable Fermentative Hydrogen Production by Polyvinyl Alcohol (Pva) Gel Beads Fluidized Bed Reactor

  • Nakao, Masaharu;Kawagoshi, Yasunori;Hino, Naoe;Iwasa, Tomonori;Furukawa, Kenji
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • A novel hydrogen fermentation technique by using polyvinyl alcohol (PVA) gel beads as a biomass carrier was investigated. The hydrogen gas was stably produced throughout the experimental period in a continuous reactor. Even though the hydrogen productivity was suddenly decrease by experimental troubles, the bacteria attached to the PVA gel beads played as an inoculum, it was promptly recovered. The hydrogen yield per glucose was not very high ($1.0-1.2mol-H_2/mol-glucose$), thus the optimization of the experimental conditions such as ORP and HRT should be considered to improve the hydrogen productivity. Bacterial community was stable during experimental period after the PVA gel beads applying, which indicated that applying of biomass carrier was specific to keep not only the biomass but also the bacteria commonly. Clostridium species were phylogenetically detected, which suggested that these bacteria contributed to the hydrogen production in the biofilm attached to the PVA gel beads.

  • PDF