• Title/Summary/Keyword: atomic ratio

Search Result 1,013, Processing Time 0.029 seconds

K:Fe Ratio as an Indicator of Cyanobacterial Bloom in a Eutrophic Lake

  • Ahn, Chi-Yong;Park, Dae-Kyun;Kim, Hee-Sik;Chung, An-Sik;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.290-296
    • /
    • 2004
  • The effects of potassium, sodium, calcium, magnesium, and iron on cyanobacterial bloom potentials were investigated in Daechung Reservoir, Korea. Potassium showed the highest correlation with the cyanobacterial cell number (r=0.487, P<0.05) and phycocyanin concentration (r=0.499, P<0.05). However, it was not likely that the potassium had directly affected the bloom formation, because the variations of its concentration were not significantly large. In contrast, the Fe concentration fluctuated drastically and exhibited a negative correlation with the cyanobacterial cell number (r=- 0.388, P<0.1) and phycocyanin concentration (r=-0.446, P<0.05). Accordingly, the K:Fe atomic ratio would appear to reflect the extent of cyanobacterial bloom more precisely than K or Fe alone. The K:Fe ratio specifically correlated with cyanobacterial percentage, the cyanobacterial cell number and phycocyanin concentration (r=0.840, P<0.001; r=0.416, P<0.05; r=0.522, P<0.01, respectively). With the K:Fe atomic ratio of over 200, the chlorophyll-a concentration, cyanobacterial cell number, and phycocyanin concentration exceeded $10\mu$g $1^{-1}$20,000 cells $ml^{-1}$, and 20 pM, respectively, the general criteria of eutrophic water.

Uranium Isotopic Ratio Analysis of U-Bearing Particulates By SIMS in CIAE

  • Yonggang, Zhao
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.257-259
    • /
    • 2004
  • In this paper measurement method of uranium isotope ratio of uranium-bearing particles in swipe samples was introduced; Swipe sample screening program was proposed on the basis of studying various destructive assay and non-destructive assays. Scanning electron microscope(SEM) equipped with an energy dispersive X-ray fluorescence(XRF) system was applied to locate the deposited uranium-containing particles on the graphite support, particle's composition and size can be identified. Some isotope ratio results were compared with those of other bulk analytical methods; By measuring the same prepared sample, we got the U-particle isotopic ratio data similar to those from IAEA NWAL, indicating that our operation parameters and experimental conditions are viable and can be used for measurement of U-particle isotopic ratio from swipe samples.

  • PDF

Plasma spectroscopy aimed at quantifying the flame equivalence ratio (화염의 정성적 당량비 측정을 위한 Plasma Diagnostics에 관한 연구)

  • Lee, SeokHwan;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.99-101
    • /
    • 2013
  • The equivalence ratio is measured by LIBS(Laser-induced Breakdown spectroscopy) in hydrocarbon flame and high temperature (${\sim}3200^{\circ}C$) oxyhydrogen flame, where a stoichiometric mixture of hydrogen and oxygen is produced from water through electrolysis. The ratio of the hydrogen and oxygen (H/O) atomic lines intensities is used for quantitatively determining the quivalence ratio. laser energy is evaluated for determining the optimal condition for plasma diagnostics. The minimum laser energy for generating plasma in a laminar premixed hydrocarbon flame was about 70 mJ, whereas oxyhydrogen flame. consequently the irradiated spot of a lower density in high temperature oxyhydrogen flame gave rise to bigger plasma in size, thus limiting the spatial resolution of the LIBS measurement.

  • PDF

Consideration on the rotor design of a claw pump (클로펌프 회전자 설계에 대한 고찰)

  • IN, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.257-261
    • /
    • 1999
  • The claw pump, one of oil-less dry pumps developed to solve problems found in vacuum systems pumped by oil-sealed rotary pumps, has been widely used separately or as a part of compound structure with a roots pump. The claw pump has some merits such as a high pumping speed, a high compression ratio, and relatively little heat generation. The high compression ratio of the claw pump is compression ratio, and relatively little heat generation. The high compression ratio of the claw pump is based on efficient sweeping action of the special type rotor and an intrinsic self-valving mechanism. The contour of the rotor with claw-type blade is designed basically to make two rotors revolve smoothly without touching with each other, and related dimensions are determined by required pumping speed, compression ratio, power demand and diameter of the rotor axis. In this paper the procedure of designing the rotor of the claw pump is described and factors influencing the pump performance are analyzed.

  • PDF

Thermal-Hydraulic Aspects of an Advanced Reactor Core with Triangular Lattice Fuel Assemblies

  • Hwang, Dae-Hyun;Yoo, Yeon-Jong;Kim, Young-Jin;Chang, Moon-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.379-384
    • /
    • 1996
  • Thermal-hydraulic performance has been analyzed for an advanced reactor core loaded with hexagonal fuel assemblies. Currently available CHF prediction models and data base for triangular lattice bundles have been thoroughly reviewed, and as a result the KfK-3 CHF correlation with limit CHFR of 1.235 has been determined to be most appropriate. The pressure drop model in COBRA-IV-I code has been modified for the analysis of triangular lattice rod bundles. In view of maximizing the thermal margin, the geometry of a hexagonal fuel assembly, such as rod diameter and rod pitch, has been optimized with a fixed fuel assembly cross sectional area The optimum value of the moderator-to-fuel volume ratio is estimated to lie between 0.65 to 1 with 9.5 mm rod diameter. The thermal margin of these hexagonal fuel assemblies in the AP600 core has been evaluated and compared with that of square lattice fuel assemblies such as VANTAGE-5H and KOFA. The analysis result shows that the performances of hexagonal fuel assemblies are more favorable than the square fuel assemblies in the aspect of steady-state overpower margin.

  • PDF

Low-Voltage Driving of Indium Zinc Oxide Transistors with Atomic Layer Deposited High-k Al2O3 as Gate Dielectric (원자층 증착을 이용한 고 유전율 Al2O3 절연 박막 기반 Indium Zinc 산화물 트랜지스터의 저전압 구동)

  • Eom, Ju-Song;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.432-436
    • /
    • 2017
  • IZO transistors with $Al_2O_3$ as gate dielectrics have been investigated. To improve permittivity in an ambient dielectric layer, we grew $Al_2O_3$ by atomic layer deposition directly onto the substrates. Then, we prepared IZO semiconductor solutions with 0.1 M indium nitrate hydrate [$In(NO_3)_3{\cdot}xH_2O$] and 0.1 M zinc acetate dehydrate [$Zn(CH_3COO)_2{\cdot}2H_2O$] as precursor solutions; the IZO solution made with a molar ratio of 7:3 was then prepared. It has been found that these oxide transistors exhibit low operating voltage, good turn-on voltage, and an average field-effect mobility of $0.90cm^2/Vs$ in ambient conditions. Studies of low-voltage driving of IZO transistors with atomic layer-deposited high-k $Al_2O_3$ as gate dielectric provide data of relevance for the potential use of these materials and this technology in transparent display devices and displays.

Thermodynamic Calculations on the Chemical Behavior of SrO During Electrolytic Oxide Reduction

  • Jeon, Min Ku;Kim, Sung-Wook;Lee, Sang-Kwon;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.415-420
    • /
    • 2020
  • Strontium is known as a salt-soluble element during the electrolytic oxide reduction (EOR) process. The chemical behavior of SrO during EOR was investigated via thermodynamic calculations to provide quantitative data on the chemical status of Sr. To achieve this, thermodynamic calculations were conducted using HSC chemistry software for various EOR conditions. It was revealed that SrO reacts with LiCl salt to produce SrCl2, even in the presence of Li2O, and that the ratio of SrCl2 depends on the initial concentration of Li2O dissolved in LiCl. It was found that SrO reacts with Li to produce Sr during EOR and that the reduced Sr reacts with LiCl salt to produce SrCl2. As a result, the proportions of metallic forms were lower in Sr than in La and Nd under various EOR conditions. The thermodynamic calculations indicated that the three chemical forms of SrO, SrCl2, and Sr co-exist in the EOR system under an equilibrium with Li, Li2O, and LiCl.

MASS ESTIMATION OF IMPACTING OBJECTS AGAINST A STRUCTURE USING AN ARTIFICIAL NEURAL NETWORK WITHOUT CONSIDERATION OF BACKGROUND NOISE

  • Shin, Sung-Hwan;Park, Jin-Ho;Yoon, Doo-Byung;Choi, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.343-354
    • /
    • 2011
  • It is critically important to identify unexpected loose parts in a nuclear reactor pressure vessel, since they may collide with and cause damage to internal structures. Mass estimation can provide key information regarding the kind as well as the location of loose parts. This study proposes a mass estimation method based on an artificial neural network (ANN), which can overcome several unresolved issues involved in other conventional methods. In the ANN model, input parameters are the discrete cosine transform (DCT) coefficients of the auto-power spectrum density (APSD) of the measured impact acceleration signal. The performance of the proposed method is then evaluated through application to a large-sized plate and a 1/8-scaled mockup of a reactor pressure vessel. The results are compared with those obtained using a conventional method, the frequency ratio (FR) method. It is shown that the proposed method is capable of estimating the impact mass with 30% lower relative error than the FR method, thus improving the estimation performance.

Enhanced Electromagnetic Properties of Nickel Nanoparticles Dispersed Carbon Fiber via Electron Beam Irradiation (전자선 안정화에 의한 니켈 나노 입자가 분산된 탄소섬유의 전자기적 특성 향상)

  • Lee, Yeong Ju;Kim, Hyun Bin;Lee, Seung Jun;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat-treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.

Transient Critical Heat Flux Under Flow Coastdown in a Vertical Annulus With Non-Uniform Heat Flux Distribution

  • Moon, Sang-Ki;Chun, Se-Young;Park, Ki-Yong;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.382-395
    • /
    • 2002
  • An experimental study on transient critical heat flux (CHF) under flow coastdown has been performed for the water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady-state CHF The transient CHF experiments have been performed for three kinds of flow transient modes based on the coastdown data of a nuclear power plant reactor coolant pump. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to- CHF becomes large as the heat flux decreases. The critical mass flux has the largest value for slow flow reduction rate. There is a pressure effect on the ratio of the transient CHF data to steady-state CHF data. Except under low system pressure conditions, the flow transient CHF was revealed to be conservative compared with the steady-state CHF data. Bowling CHF correlation and thermal hydraulic system code MARS show promising results for the prediction of CHF occurrence .