• Title/Summary/Keyword: atmospheric window

Search Result 60, Processing Time 0.027 seconds

THE EFFECT OF ATMOSPHERIC SCATTERING AS INFERRED FROM THE ROCKET-BORNE UV RADIOMETER MEASUREMENTS

  • Kim, Jhoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 1997
  • Radiometers in UV and visible wavelengths were onboard the Korean Sounding Rocket(KSR)-1 and 2 which were launched on June 4th and September 1st, 1993. These radiometers were designed to capture the solar radiation during the ascending period of the rocket flight. The purpose of the instrument was to measure the vertical profiles of stratospheric ozone densities. Since the instrument measured the solar radiation from the ground to its apogee, it is possible to investigate the altitude variation of the measured intensity and to estimate the effect of atmospheric scattering by comparing the UV and visible intensity. The visible channel was a reference because the 450-nm wavelength is in the atmospheric window region, where the solar radiation is transmitted through the atmosphere without being absorbed by other atmospheric gases. The use of 450-nm channel intensity as a reference should be limited to the altitude ranges above the certain altitudes, say 20 to 25km where the signals are not perturbed by atmospheric scattering effects.

  • PDF

Estimation of Total Precipitable Water from MODIS Infrared Measurements over East Asia (MODIS 적외 자료를 이용한 동아시아 지역의 총가강수량 산출)

  • Park, Ho-Sun;Sohn, Byung-Ju;Chung, Eui-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.309-324
    • /
    • 2008
  • In this study the retrieval algorithms have been developed to retrieve total precipitable water (TPW) from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) infrared measurements using a physical iterative retrieval method and a split-window technique over East Asia. Retrieved results from these algorithms were validated against Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) over ocean and radiosonde observation over land and were analyzed for investigating the key factors affecting the accuracy of results and physical processes of retrieval methods. Atmospheric profiles from Regional Data Assimilation and Prediction System (RDAPS), which produces analysis and prediction field of atmospheric variables over East Asia, were used as first-guess profiles for the physical retrieval algorithm. We used RTTOV-7 radiative transfer model to calculate the upwelling radiance at the top of the atmosphere. For the split-window technique, regression coefficients were obtained by relating the calculated brightness temperature to the paired radiosonde-estimated TPW. Physically retrieved TPWs were validated against SSM/I and radiosonde observations for 14 cases in August and December 2004 and results showed that the physical method improves the accuracy of TPW with smaller bias in comparison to TPWs of RDAPS data, MODIS products, and TPWs from split-window technique. Although physical iterative retrieval can reduce the bias of first-guess profiles and bring in more accurate TPWs, the retrieved results show the dependency upon initial guess fields. It is thought that the dependency is due to the fact that the water vapor absorption channels used in this study may not reflect moisture features in particular near surface.

DEVELOPMENT AND VALIDATION OF LAND SURFACE TEMPERATURE RETRIEVAL ALGORITHM FROM MTSAT-1R DATA

  • Hong, Ki-Ok;Kang, Jeon-Ho;Suh, Myoung-Seok
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.293-296
    • /
    • 2008
  • Land surface Temperature (LST) is a very useful surface parameter for the wide range of applications, such as agriculture, numerical and climate modelling community. Whereas operational observation of LST is far from the needs of application community in the spatial Itemporal resolution and accuracy. So, we developed split-window type LST retrieval algorithm to estimate the LST from MTSAT-IR data. The coefficients of split-window algorithm were obtained by means of a statistical regression analysis from the radiative transfer simulations using MODTRAN 4 for wide range of atmospheric profiles, satellite zenith angle and lapse rate conditions including the surface inversions. The sensitivity analysis showed that the LST algorithm reproduces the LST with a reasonable quality. However, the LST algorithm overestimates and underestimates for the strong surface inversion and superadiabatic conditions especially for the warm temperature, respectively. And the performance of LST algorithms is superior when satellite zenith angle is small. The accuracy of the retrieved LST has been evaluated with the Moderate Resolution Imaging Spectroradiometer (MODIS) LST data. The validation results showed that the correlation coefficients and RMSE are about 0.83${\sim}$0.98 and 1.38${\sim}$4.06, respectively. And the quality of LST is significantly better during night and winter time than during day and summer. The validation results showed that the LST retrieval algorithm could be used for the operational retrieval of LST from MTSAT-IR and COMS(Communication, Ocean and Meteorological Satellite) data with some modifications.

  • PDF

A Study on Numerical Simulation for the Work Environment Improvement of Highway Tollgate Booth (고속도로 요금소 부스 근무환경 개선을 위한 기류해석 연구)

  • 김신도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.129-140
    • /
    • 2000
  • Simulation study has been carried out to analyze the air flow supplying from the heat pump system inside the tollgate booth by using the Phoenix computer simulation program. Through this simulation analysis we can find the problem of present tollgate booth in terms of air flow and recommend an improved model also simulate this model. Final results as follows; It was turned out that the fresh air conditioning is not provided to the worker effectively due to the improper location of inlet and outlet in the present tollgate booth in addition to that the air curtain system applied in the booth lowered air circulation from outside. The improved model was suggested first to increase the air curtain effect by downsizing the window and by installation of the air curtain suction line to reduce the induced outdoor air second to supply the fresh air to the worker directly by relocation of the inlet and outlet of supplying air. With these improved modifications better results have been reached in terms of air flow inside the booth. Next through the air flow simulation of outside booth the contaminated outdoor air has been easuily infiltrating into the booth through the window because of its rectangle shape. Stream like shape of booth has been proposed through the computer simulation as an alternative shape of tollgate booth for a new design.

  • PDF

Analyses of the Impact of Atmospheric Conditions to Daylight Illuminance in a Small Space (기상인자의 변화에 따른 소규모 공간에서의 주광조도분석)

  • Kim, Soo-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.17-23
    • /
    • 2004
  • Daylight illuminance levels in a small space were calculated using the Superlite program under limited conditions of the turbidity and thickness of condensible water of atmosphere. Three sky conditions(clear sky with direct sun, clear sky with no direct sun, overcast sky with no direct sun) were used. The atmospheric conditions significantly impacted the illuminance levels under especially a clear sky with direct sun. The overcast sky with no direct sun provided no difference for the illuminance levels in the space. As the calculation points moved away from a window, reflected illuminance levels gradually increased but direct illuminance levels significantly decreased.

Estimation of Total Precipitable Water in East Asia Using the MODIS Satellite Data

  • Park, Seon-Ki
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E4
    • /
    • pp.149-155
    • /
    • 2003
  • In this study. the amounts of the total precipitable water (TPW) in both global and regional scale are estimated from the MODIS instrument, which is on-board the EOS satellites, Terra and Aqua. The estimation is made from the five near-infrared spectral bands, using a technique employing ratios of water- vapor absorbing channels centered at 0.905, 0.936, 0.940 ${\mu}{\textrm}{m}$ with atmospheric window channels at 0.865 and 1.240 ${\mu}{\textrm}{m}$. Through analyses of monthly and eight-days mean TPW, one can monitor characteristics of seasonal variations as well as amount and distribution (i.e., water resources) of TPW at both global and local regions. Long-term monitoring of TPW is essential to understand the regional variations of water resources in East Asia.

Analysis of the Long-term Trend of PM10 Using KZ Filter in Busan, Korea (KZ 필터를 이용한 부산지역 PM10의 장기 추세 분석)

  • Do, Woo-gon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.221-230
    • /
    • 2017
  • To determine the effect of air pollution reduction policies, the long-term trend of air pollutants should be analyzed. Kolmogorov-Zurbenko (KZ) filter is a low-pass filter, produced through repeated iterations of a moving average to separate each variable into its temporal components. The moving average for a KZ(m, p) filter is calculated by a filter with window length m and p iterations. The output of the first pass subsequently becomes the input for the next pass. Adjusting the window length and the number of iterations makes it possible to control the filtering of different scales of motion. To break down the daily mean $PM_{10}$ into individual time components, we assume that the original time series comprises of a long-term trend, seasonal variation, and a short-term component. The short-term component is attributable to weather and short-term fluctuations in precursor emissions, while the seasonal component is a result of changes in the solar angle. The long-term trend results from changes in overall emissions, pollutant transport, climate, policy and/or economics. The long-term trend of the daily mean $PM_{10}$ decreased sharply from $59.6ug/m^3$ in 2002 to $44.6ug/m^3$ in 2015. This suggests that there was a long-term downward trend since 2005. The difference between the unadjusted and meteorologically adjusted long-term $PM_{10}$ is small. Therefore, we can conclude that $PM_{10}$ is unaffected by the meteorological variables (total insolation, daily mean temperature, daily mean relative humidity, daily mean wind speed, and daily mean local atmospheric pressure) in Busan.

Evaluation of Sensitivity and Retrieval Possibility of Land Surface Temperature in the Mid-infrared Wavelength through Radiative Transfer Simulation (복사전달모의를 통한 중적외 파장역의 민감도 분석 및 지표면온도 산출 가능성 평가)

  • Choi, Youn-Young;Suh, Myoung-Seok;Cha, DongHwan;Seo, DooChun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1423-1444
    • /
    • 2022
  • In this study, the sensitivity of the mid-infrared radiance to atmospheric and surface factors was analyzed using the radiative transfer model, MODerate resolution atmospheric TRANsmission (MODTRAN6)'s simulation data. The possibility of retrieving the land surface temperature (LST) using only the mid-infrared bands at night was evaluated. Based on the sensitivity results, the LST retrieval algorithm that reflects various factors for night was developed, and the level of the LST retrieval algorithm was evaluated using reference LST and observed LST. Sensitivity experiments were conducted on the atmospheric profiles, carbon dioxide, ozone, diurnal variation of LST, land surface emissivity (LSE), and satellite viewing zenith angle (VZA), which mainly affect satellite remote sensing. To evaluate the possibility of using split-window method, the mid-infrared wavelength was divided into two bands based on the transmissivity. Regardless of the band, the top of atmosphere (TOA) temperature is most affected by atmospheric profile, and is affected in order of LSE, diurnal variation of LST, and satellite VZA. In all experiments, band 1, which corresponds to the atmospheric window, has lower sensitivity, whereas band 2, which includes ozone and water vapor absorption, has higher sensitivity. The evaluation results for the LST retrieval algorithm using prescribed LST showed that the correlation coefficient (CC), the bias and the root mean squared error (RMSE) is 0.999, 0.023K and 0.437K, respectively. Also, the validation with 26 in-situ observation data in 2021 showed that the CC, bias and RMSE is 0.993, 1.875K and 2.079K, respectively. The results of this study suggest that the LST can be retrieved using different characteristics of the two bands of mid-infrared to the atmospheric and surface conditions at night. Therefore, it is necessary to retrieve the LST using satellite data equipped with sensors in the mid-infrared bands.

A study on Monitoring for CFC-12 and CFC-11 in the atmosphere near Mt. Kwan-Ak. (관악산 대기 중의 CFC-12 및 CFC-11 모니터링에 관한 연구)

  • 김경렬;민동하;박미경;김은희;최상화;조하만;남재철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 1994
  • A monitoring system for atmospheric CFC-12 and CFC-11 has been established at Mt. Kwan-Ak, Seoul National University (SNU) since July, 1991. The concentrations showed quite a large variation ranging from 495 to 37600 pptv (pptv=part per trillion, 10$^{-12}$ , v/v) for CFC-12 and from 233 to 12100 pptv for CFC-11 due to many local sources. However, monthly medians show rather limited ranges ; 553~765 pptv for CFC-12 and 301~431 pptv for CFC-11. Furthermore minimum concentrations could be defined relatively well during the whole period of observation. The regional background concentrations in 1993 near SNU wer estimated as 533 pptv for CFC-12 and 293 pptv for CFC-11. These values are very comparable to global averages in Northern Hemisphere, 523 pptv for CFC-12 and 287 pptv for CFC-11, reflecting the fast atmospheric mixing processes within the hemisphere. Examinations with meteorological parameters such as wind speed and direction suggest the possible measurement-window at SNU, appropriate for regional monitoring. Studies for improving the monitoring capability of the SNU station such as automation of the analysis system along with correlation with other meteorological parameters, are in progress at the present time.

  • PDF

SENSITIVITY ANALYSIS ABOUT THE METHODS OF UTILIZING THE HIGH RESOLUTION CLIMATE MODEL SIMULATION FOR KOREAN WATER RESOURCES PLANNING (II) : NUMERICAL EXPERIMENTS

  • Jeong, Chang-Sam;Hwang, Man-Ha;Ko, Ick-Hwan;Heo, Jun-Haeng;Bae, Deg-Hyo
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.73-89
    • /
    • 2005
  • Two kinds of high resolution GCMs with the same spatial resolutions but with different schemes run by domestic and foreign agencies are used to clarify the usefulness and sensitivity of GCM for water resources applications for Korea. One is AMIP-II (Atmospheric Model Intercomparison Project-II) type GCM simulation results done by ECMWF (European Centre for Medium-Range Weather Forecasts) and the other one is AMIP-I type GCM simulation results done by METRI (Korean Meteorological Research Institute). Observed mean areal precipitation, temperature, and discharge values on 7 major river basins were used for target variables. Monte Carlo simulation was used to establish the significance of the estimator values. Sensitivity analyses were done in accordance with the proposed ways. Through the various tests, discrimination condition is sensitive for the distribution of the data. Window size is sensitive for the data variation and the area of the basins. Discrimination abilities of each nodal value affects on the correct association. In addition to theses sensitivity analyses results, we also noticed some characteristics of each GCM. For Korean water resources, monthly and small window setting analyses are recommended using GCMs.

  • PDF