Estimation of Total Precipitable Water in East Asia Using the MODIS Satellite Data

  • Park, Seon-Ki (Department of Environmental Science and Engineering, Ewha Womans University)
  • Published : 2003.12.01

Abstract

In this study. the amounts of the total precipitable water (TPW) in both global and regional scale are estimated from the MODIS instrument, which is on-board the EOS satellites, Terra and Aqua. The estimation is made from the five near-infrared spectral bands, using a technique employing ratios of water- vapor absorbing channels centered at 0.905, 0.936, 0.940 ${\mu}{\textrm}{m}$ with atmospheric window channels at 0.865 and 1.240 ${\mu}{\textrm}{m}$. Through analyses of monthly and eight-days mean TPW, one can monitor characteristics of seasonal variations as well as amount and distribution (i.e., water resources) of TPW at both global and local regions. Long-term monitoring of TPW is essential to understand the regional variations of water resources in East Asia.

Keywords

References

  1. Barron, E.J., D.L. Hartmann, M.D. King, D.S. Schimel, and M.R. Schoeberl (1999)Overview, In EOS Science Plan-The State of Science in the EOS Program, NP-1988-12-069-GSFC, NASA/GSFC, 387 pp.
  2. Bouffies, S., F.M. Breon, D. Tame, and P. Dubuisson (1997) Atmospheric water vapor estimate by a differential absorption technique with the polarization and directionality of the Earth reflectances (POLDER) instrument, J. Geophys. Res., 102, 3831-3841
  3. Chesters, D., L.W. Uccellini, and W.D. Robinson (1983) Low level water vapor fields from the VISSR atmospheric sounder (VAS) split window channels, J. Climate Appl. Meteor., 22, 725-743
  4. Gao, B.-C. and Y.J. Kaufman (2003) Water vapor retrievals using Moderate Resolution Imaging SPectroradiometer(MODIS) near-infrared channels, J. Geophys. Res., 108(DI3), 4389-4398
  5. Gao, B.-C., P. Yang, G. Guo, S.K. Park, W.J. Wiscombe, and B. Chen (2003)Measurements of water vapor and high clouds over the Tibetan plateau with the Terra MODIS instrument, IEEE Trans. Geosci. Remote Sensing, 41, 895-900
  6. Kaufman, Y.J. and B.-C. Gao (1992) Remote sensing of water vapor in the near IR from EOS/MODIS, IEEE Trans. on Geosci. Remote Sensing, 30, 871-884
  7. King, M.D., Y.J. Kaufman, W.P. Menzel, and D. Tanre (1992) Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS), IEEE Trans. Geosci. Remote Sensing, 30,1-27
  8. Kleespies, T.J. and L.M. McMillin (1990) Retrieval of precipitable water from observations in the split window over varying surface temperatures, J. Appl. Meteor., 29, 851-862
  9. Kneizys, F.X., E.P. Shettle, L.W. Abreu, J.H. Chetwynd, G.P. Anderson, W.O. Gallery, J.E.A. Selby, and S.A. Clough, Users Guide to LOWTRAN 7, AFGL-TR-8-0177, Air Force Geophys. Lab., Bedford, Mass., 1988
  10. NASA, cited 2003a: EOS: Earth Observing System, Available online from 'http://eos.gsfc.nasa.gov/'
  11. NASA, cited 2003b: TERRA: The EOS Flagship, Available online from 'http://eos-am.gsfc.nasa.gov/'
  12. NASA, cited 2003c: Aqua Website, Available online from 'http://aqua.gsfc.nasa. gov/'
  13. NASA, cited 2003d: MODIS Web, Available online from 'http://modis.gsfc. nasa.gov/'
  14. NASA, cited 2003e: MODIS Atmosphere, Available online from 'http://modis-atmos.gsfc.nasa.gov/'
  15. Prabhakara, C., H.D. Chang, and A.T.C. Chang (1982) Remote sensing of precipitable water over the oceans from Nimbus 7 microwave measurements, J. Appl. Meteor., 31, 59-68
  16. Reuter, D., J. Susskind, and A. Pursch (1988) First-guess dependence of a physically based set of temperature-humidity retrievals from HIRS2/MSU data, J. Atmos. Ocean. Tech., 5, 70-83
  17. Thai, S. and M.V. Schonermark (1998) Determination of the column water vapor of the atmosphere using backscattered solar radiation measured by the Modular Optoelectronic Scanner (MOS), Int. J. Remote Sens., 19, 3223-3236