• Title/Summary/Keyword: atmospheric radon

Search Result 58, Processing Time 0.033 seconds

The Variation Characteristics of Indoor Radon Concentration from Buildings with Different Environment, Seoul (서울지역 건축물의 환경적 특성에 따른 실내 라돈농도 변화)

  • Jeon, Jae-Sik;Lee, Ji-Young;Eom, Seok-Won;Chae, Young-Zoo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.692-702
    • /
    • 2011
  • For more effective indoor radon reduction policy and technique, we researched radon data analysis for some buildings in Seoul. Those buildings were categorized as dwelling, underground and office space and the variations of radon concentration and its sources were evaluated. The variations of radon concentrations of indoor space of buildings for a day were patterned specifically by dwelling habits and different environment. As for the new built apartments which were not yet moved in, their indoor radon concentrations were showed more than 3 times after applying interior assembly, and were 5 times higher than ones of rather old residences. As for the subway stations, the radon concentrations during off-run times were about 15% higher than run-times. 10% of radon seemed to be reduced by installation of platform screen doors. As for office space, radon concentrations during working hours were about 2.5 times higher than non-working hours. Plaster board are expected as a main source of radon for them. By radon measurement method for long-term, its data can be over estimated because it covers non-active time in office or public space. Therefore combination of short and long-term measurement method is required for effective and economic reduction. Furthermore importance of ventilation is requested as public information service for all dwelling space. And also standardization for radium content or radiation of radon is necessary.

Concentration Variation of Atmospheric Radon and Gaseous Pollutants Related to the Airflow Transport Pathways during 2010~2015 (대기 라돈 및 기체상 오염물질의 기류 이동경로별 농도변화: 2010~2015년 측정)

  • Song, Jung-Min;Kim, Ki-Ju;Bu, Jun-Oh;Kim, Won-Hyung;Kang, Chang-Hee;Chambers, S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.321-330
    • /
    • 2018
  • Concentrations of the atmospheric radon and gaseous pollutants were measured at the Gosan site on Jeju Island from 2010 to 2015, in order to observe their time-series variation characteristics and examine the concentration change related to the airflow transport pathways. Based on the realtime monitoring of the atmospheric radon and gaseous pollutants, the daily mean concentrations of radon ($^{222}Rn$) and gaseous pollutants($SO_2$, CO, $O_3$, $NO_x$) were $2,400mBq\;m^{-3}$ and 1.3, 377.6, 41.1, 3.9 ppb, respectively. On monthly variations of radon, the mean concentration in October was the highest as $3,033mBq\;m^{-3}$, almost twice as that in July ($1,452mBq\;m^{-3}$). The diurnal variation of radon concentration shows bimodal curves at early morning (around 7 a.m.) and near midnight, whereas its lowest concentration was recorded at around 3 p.m. Several gaseous pollutants($SO_2$, CO, $NO_x$) showed a similar seasonal variation with radon concentration as high in winter and low in summer, whereas the $O_3$ concentrations had a bit different seasonal trend. According to the cluster back trajectory analysis, the frequencies of airflow pathways moving from continental North China, East China, Japan and the East Sea, the Korean Peninsula, and North Pacific Ocean routes were 36, 37, 10, 13, and 4%, respectively. When the airflow were moved to Jeju Island from continental China, the concentrations of radon and gaseous pollutants were relatively high. On the other hand, when the airflows were moved from North Pacific Ocean and East Sea, their concentrations were much lower than those from continental China.

One-Year Continuous Measurement of Outdoor Radon Progeny Concentration in Beijing Area

  • Zhang, Lei;Wang, Yunxiang;Guo, Qiuju
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.95-100
    • /
    • 2020
  • Background: Compared with reported data of radon concentration, data of radon progeny concentration is limited in general, especially in outdoor environment. Materials and Methods: To know both the level and the variation of radon progeny concentration in outdoor environment in Beijing area, one-year continuous measurement with a cycle of 60 minutes was carried out by a step-advanced filter (SAF) monitor for radon progeny measurement. The observation site was located in a park in Eastern Beijing area, and the observation period was from October 17, 2018 to September 29, 2019. Results and Discussion: The equivalent equilibrium concentration (EEC) of radon progeny varies from 0.7 to 19.1 Bq·m-3, with an annual average of 4.9 ± 2.7 Bq·m-3. A clear diurnal variation of EEC, higher in the early morning and lower in the late afternoon, is observed due to the high sensitivity of the SAF monitor. Conclusion: Vertical convection of atmospheric boundary layer is thought to be the main reason of this phenomenon. For annual variation, the lowest monthly average EEC appeared in April, while the highest appeared in November, which might attribute to the atmospheric stability in different seasons.

A Study on Indoor Radon Concentrations in Seoul( I ) (서울 일부지역(一部地域)의 실내(室內) Radon 오염도(汚染度) 조사(調査) 연구(硏究)( I ))

  • Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.19 no.1
    • /
    • pp.51-54
    • /
    • 1996
  • This study was conducted to find out the indoor radon concentrations from Jan. 1, to Dec. 31, 1995 in Seoul, and the following results were achieved; 1. The average concentration of indoor radon ranged from $0.51pCi/\ell$ to $0.78pCi/\ell$. 2. The correlation coefficients(r) of radon concentration and indoor meteorological conditions were as follows; 1) temperature : r=0.11 2) atmospheric pressure : r= -0.01 3) humidity : r=0.227.

  • PDF

A Noticeable Change in Indoor Radon Levels After Platform Screen Doors Installation in Seoul Subway Station (스크린도어 설치 후 서울지하철역 라돈 농도의 변화 특성)

  • Jeon, Jae-Sik;Yoon, Jong-Cheol;Lee, Ho-Chan;Eom, Seok-Won;Chae, Young-Zoo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.59-67
    • /
    • 2012
  • Platform screen doors (PSD) installed at 289 stations in Seoul metropolitan subway from November 2005 to December 2009, are expected to prevent death from a fall and improve air quality. In this study, we systematically surveyed changes in radon concentrations before and after PSD installation in Seoul metropolitan subway stations. By solid-state nuclear track detectors (SSNTD), the radon concentrations before and after the PSD installation were measured at 54 stations of 6 lines from 2 to 7 reported to have relatively high radon concentrations. Mean radon concentrations at platforms were decreased by approximately 56% from 121.7 Bq/$m^3$ to 54.0 Bq/$m^3$. Before PSD installation, mean radon concentrations were in the decreasing order for subway lines 7, 5, 6, 3, 4 and 2. On the other hand, after PSD installation the order was changed to 5, 6, 7, 3, 4 and 2. According to a radon map of Seoul metropolitan subway, the number of platforms where radon concentration over was 74 Bq/$m^3$ decreased from 38 to 12 after PSD installation.

Temporal Variation of Atmospheric Radon-222 and Gaseous Pollutants in Background Area of Korea during 2013-2014

  • Bu, Jun-Oh;Song, Jung-Min;Kim, Won-Hyung;Kang, Chang-Hee;Song, Sang-Keun;Williams, Alastair G.;Chambers, Scott D.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.114-121
    • /
    • 2017
  • Real-time monitoring of hourly concentrations of atmospheric Radon-222 ($^{222}Rn$, radon) and some gaseous pollutants ($SO_2$, CO, $O_3$) was performed throughout 2013-2014 at Gosan station of Jeju Island, one of the cleanest regions in Korea, in order to characterize their background levels and temporal variation trend. The hourly mean concentrations of radon and three gaseous pollutants ($SO_2$, CO, $O_3$) over the study period were $2216{\pm}1100mBq/m^3$, $0.6{\pm}0.7ppb$, $211.6{\pm}102.0ppb$, and $43.0{\pm}17.0ppb$, respectively. The seasonal order of radon concentrations was as fall ($2644mBq/m^3$)$${\sim_\sim}$$winter ($2612mBq/m^3$)>spring ($2022mBq/m^3$)>summer ($1666mBq/m^3$). The concentrations of $SO_2$ and CO showed similar patterns with those of radon as high in winter and low in summer, whereas the $O_3$ concentrations had a bit different trend. Based on cluster analyses of air mass back trajectories, the air mass frequencies originating from Chinese continent, North Pacific Ocean, and the Korean Peninsula routes were 30, 18, and 52%, respectively. When the air masses were moved from Chinese continent to Jeju Island, the concentrations of radon and gaseous pollutants ($SO_2$, CO, $O_3$) were relatively high: $2584mBq/m^3$, 0.76 ppb, 225.8 ppb, and 46.4 ppb. On the other hand, when the air masses were moved from North Pacific Ocean, their concentrations were much low as $1282mBq/m^3$, 0.24 ppb, 166.1 ppb, and 32.5 ppb, respectively.

Assessment of radon potential in the areas covered with granite and gneiss in Korea

  • Je Hyun-Kuk;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.501-503
    • /
    • 2003
  • Soil-gas radon level and other atmospheric factors have been measured at residual soil profiles that overlie granite bedrock which consists of major geology in Korea for 6 months from November, 2000 to April, 2001. Seasonal variations of soil-gas radon concentration are generally of greater magnitude than day-to-day fluctuations. The highest radon concentrations of 5,131 pCi/L measured during winter season and the lowest radon concentrations of 107 pCi/L during spring season. Two study areas, Bongcheon-dong(granite bedrock) and Seongnam-Yongin(gneiss bedrock) were investigated to assess the radon potential according to their field survey and emanation tests. The mean values of radon decrease in sequentially from Suji-A(813 pCi/L)>Suji-B(757 pCi/L)>Bundang-B(691 pCi/L)>Bundang-A(643 pCi/L)>Bongcheon-dong(513 pCi/L). Estimated soil-gas radon potential using maximum radon emanation ratios of each study area decreases in the order of Bongcheondong(950 pCi/L)>Suji-B(524 pCi/L)>Bundang-A(437 pCi/)>Bundang-B(259 pCi/L)>Suji-A(230 pCi/L) areas. The values of indoor radon and its daughter product concentrations in Bongcheon-dong area show that indoor basement rooms in poor ventilation condition could be classified as extremely high radon risk location of more than 4 pCi/L Rn and 0.02 WL.

  • PDF

Studies on the Spatial Analysis for Distribution Estimation of Radon Concentration at the Seoul Area (서울지역 라돈농도의 분포예측을 위한 공간분석법 연구)

  • Baek, Seung-A;Lee, Tae-Jung;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.538-550
    • /
    • 2008
  • Radon is an invisible, odorless, and radioactive gas. It is formed by the disintegration of radium, which is a decay product of uranium. Some amounts of radon gas and its products are present ubiquitously in the soil, water, and air. Particularly high radon levels occur in regions of high uranium content. Although radon is permeable into indoor environment not only through geological features (bed rock and permeability) but also through the construction materials and underground water, the radiation from the geological features is generally main exposure factor. So there can be a problem in a certain space such as the underground and/or relatively poor ventilation condition. In this study, a GIS technique was used in order to investigate spatial distribution of radon measured from sub- way stations of 1 thru 8 in Seoul, Korea in 1991, 1998, 2001, and 2006. Spatial analysis was applied to reproduce the radon distribution. We utilized spatial analysis techniques such as inverse distance weighted averaging (IDW) and kriging techniques which are widely used to relate between different spatial points. To validate the results from the analyses, the jackknife technique for an uncertainty test was performed. When the number of measuring sites was less than 100 and also when the number of omitted sites increased, the kriging technique was better than IDW. On the other hand, when the number of sites was over 100, IDW technique was better than kriging technique. Thus the selection of analytical tool was affected sensitives by the analysis based on the number of measuring sites.

Real-time monitoring of radon background level at Gosan site, Jeju Island (제주도 고산지역의 라돈 배경농도 실시간 모니터링)

  • Kang, Chang-Hee;Kim, Won-Hyung;Hu, Chul-Goo;Kang, Dong-Hun
    • Analytical Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2012
  • The real-time monitoring of radon ($^{222}Rn$) concentrations has been carried out to evaluate the background concentration level of atmospheric radon in Gosan site, Jeju Island. The mean concentration of radon for the recent 10 years was 2831 $mBq/m^3$ (0.077 pCi/L), which was 19.5 time lower than that of indoor radon in Korea. The seasonal concentrations were 2657, 2071, 3249, 3384 $mBq/m^3$ respectively for spring, summer, fall, and winter seasons. In monthly comparison, the radon concentrations were high in October and low in July. The hourly concentrations have increased during the nighttime, showing 3666 $mBq/m^3$ at 7 a.m., and decreased relatively during the daytime, showing 2755 $mBq/m^3$ at 2~3 p.m. From the back trajectory analysis, the radon concentrations showed higher values when the air mass was moved from the Asia continent to Jeju area, on the other hand, it showed low values when it was moved from the North Pacific Ocean.

Radon and TSP Concentrations in the Ambient Air of Gosan Area, Jeiu Island between 2001 and 2004 (제주도 고산지역의 라돈 및 TSP 에어로졸 농도 특성: 2001~2004년 측정)

  • Kang, Chang-Hee;Ko, Hee-Jung;Zahorowski, Wlodek
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.612-624
    • /
    • 2007
  • The real-time monitoring of radon ($^{222}Rn$) concentrations has been carried out to evaluate its ambient background concentration levels in Gosan site, Jeju Island between January 2001 and December 2004. In addition, the atmospheric TSP aerosols have been sampled, and their ionic and metallic components were analyzed to understand the characteristics of air pollution. The mean concentration of radon was $3,121{\pm}1,627\;mBq/m^3$, and the seasonal mean concentrations for spring, summer, fall and winter seasons were 2,898, 2,398, 3,571 and $3,646\;mBq/m^3$, respectively, The hourly concentrations have shown the highest value at 7 a.m. and the lowest value at 2 p.m. From the backward trajectory analyses, the radon concentrations have increased, when the air parcels were moved from the Chinese continent to Jeju area. On the other hand, they have decreased, when the air parcels from the North Pacific Ocean. In the analytical results of ionic species and metal elements of TSP aerosols, the concentrations of $nss-{SO_4}^{2-}$ and S were higher in June and March. Meanwhile, the concentrations of other anthropogenic species as well as soil components were mostly higher in March and April. On the basis of factor analysis, the TSP aerosols at Gosan area were largely influenced by soil sources, followed by anthropogenic sources and marine sources. From the result of backward trajectory analyses, the concentrations of $nss-{SO_4}^{2-},\;{NO_3}^-$, Al and Ca were mostly higher, when the air parcels moved from Chinese continent to Jeju area. On the other hand, their concentrations were lower, when the air parcels drifted from the North Pacific Ocean.