• 제목/요약/키워드: atmospheric aerosols

검색결과 383건 처리시간 0.029초

Submicron 부유분진의 화학적 조성 및 분포에 관한 연구 (Studies on the Chemical Compositions and Distributions of Ambient Sumicron Aerosols)

  • 황인조;김동술
    • 한국대기환경학회지
    • /
    • 제14권1호
    • /
    • pp.11-23
    • /
    • 1998
  • The purpose of this study was to survey chemical distribution of inorganic elements and ions in the submicron particles, to characterize qualitatively emitting sources by factor analysis, and finally to reveal existing patterns in terms of chemical compounds by a stepwise multiple regression analysis. Total of 141 samples were collected by a cascade impactor from 1989 to1996. Fifteen chemical species (Al, Ba, Cd, K, Pb, Cu, Fe, Ni, $Cl^-, NO_3^-, SO_4^{2-}, K^+, Mg^{2+}, Ca^{2+}, and Na^+$) were characterized by AAS and IC. The study showed that average seasonal levels of submicron particulate matters $(d_p<0.43 \mum)$ were 18.7 $\mug/m^3$ in spring, 15.5 $\mug/m^3$ in summer, 15.7 $\mug/m^3$ in fall, and 24.5 $\mug/m^3$ in winter, respectively. All of the anion concentrations in the particle were highest in the winter season. By applying a factor analysis, 5 source patterns were qualitatively obtained, such as sulfate related source, nitrate related source, oil burning source, calcium related source, and coal combustion source. Finally, when applying a stepwise multiple regression analysis, the results clearly showed that $Na^+ and Ca^{2+}, K^+ and Ca^{2+}, NO_3^-$ and relative humidity, $Cl^-$ and ambient temperature, $Ca^{2+} and Cl^-, Mg^{2+} and SO_4^{2-}, Na^+ and NO_3^-, and Ca^{2+} and NO_3^-$, respectively, are negatively contributed to each other. As a result of those statistical analysis, we could suggest that some chemical compounds in the submicron particles such as$NaNO_3, MgSO_4, Ca(NO_3)_2, and CaCl_2$ may not exist on the filter as final composing products; however, other compounds may possibly exist in the form of $Mg(NO_3)_2, CaSO_4, Na_2SO_4, K_2SO_4, MgCl_2, NaCl, and KCl$. Thus, it must be necessary to identify differences between the results of above statistical analysis and of the real world by laboratory experiments.

  • PDF

3-Stage DRUM 샘플러를 이용한 광주 도심지역의 봄철과 여름철 PM2.5 원소적 조성 비교 (Elemental Composition of PM2.5 Particulate with a 3-Stage DRUM Sampler during Spring and Summer Seasons in Urban Area of Gwangju, Korea)

  • 류성윤;김영준
    • 한국대기환경학회지
    • /
    • 제21권6호
    • /
    • pp.699-708
    • /
    • 2005
  • To characterize the elemental composition of fine particles in urban area, $PM_{2.5}$ was collected by a 3-stage DRUM impactor at Gwangju during spring and summer. Time and size resolved concentrations for 19 trace elements were obtained by synchrotron X-Ray fluorescence analysis. Trace elements in summer were distributed in smaller size range compared to those in spring. Almost trace element concentrations in fine particles were highly increased during the Asian dust. In spring, soil elements such as Si, K, Ca, Ti and Fe had low enrichment factors indicating the dominant influence of soil dust. However, all elements had high enrichment factors in summer implying that these elements could be emitted from the anthropogenic sources. Factor analysis was conducted with the elemental composition data in order to identify anthropogenic sources of aerosols in urban area during spring and summer. Fine particles in spring have several sources such as soil dust originating from China continental region, coal and oil combustion, biomass burning, sea salt, ferrous and nonferrous metal sources. On the other hand, fine particles in summer were influenced by road dust, gasoline vehicle as well as coal and oil combustion, sea salt, ferrous and nonferrous metal sources.

Evaluation of Ensemble Approach for O3 and PM2.5 Simulation

  • Morino, Yu;Chatani, Satoru;Hayami, Hiroshi;Sasaki, Kansuke;Mori, Yasuaki;Morikawa, Tazuko;Ohara, Toshimasa;Hasegawa, Shuichi;Kobayashi, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • 제4권3호
    • /
    • pp.150-156
    • /
    • 2010
  • Inter-comparison of chemical transport models (CTMs) was conducted among four modeling research groups. Model performance of the ensemble approach to $O_3$ and $PM_{2.5}$ simulation was evaluated by using observational data with a time resolution of 1 or 6 hours at four sites in the Kanto area, Japan, in summer 2007. All groups applied the Community Multiscale Air Quality model. The ensemble average of the four CTMs reproduced well the temporal variation of $O_3$ (r=0.65-0.85) and the daily maximum $O_3$ concentration within a factor of 1.3. By contrast, it underestimated $PM_{2.5}$ concentrations by a factor of 1.4-2, and did not reproduce the $PM_{2.5}$ temporal variation at two suburban sites (r=~0.2). The ensemble average improved the simulation of ${SO_4}^{2-}$, ${NO_3}^-$, and ${NH_4}^+$, whose production pathways are well known. In particular, the ensemble approach effectively simulated ${NO_3}^-$, despite the large variability among CTMs (up to a factor of 10). However, the ensemble average did not improve the simulation of organic aerosols (OAs), underestimating their concentrations by a factor of 5. The contribution of OAs to $PM_{2.5}$ (36-39%) was large, so improvement of the OA simulation model is essential to improve the $PM_{2.5}$ simulation.

Ionic Compositions of PM10 and PM2.5 Related to Meteorological Conditions at the Gosan Site, Jeju Island from 2013 to 2015

  • Song, Jung-Min;Bu, Jun-Oh;Lee, Jae-Yun;Kim, Won-Hyung;Kang, Chang-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.313-321
    • /
    • 2017
  • $PM_{10}$ and $PM_{2.5}$ were collected at the Gosan Site on Jeju Island from 2013 to 2015, and their ionic and elemental species were analyzed to examine the variations in their chemical compositional characteristics related to different meteorological conditions. Concentrations of nss-$SO_4{^{2-}}$ and $NH_4{^+}$ were respectively 6.5 and 4.7 times higher in the fine particle mode ($PM_{2.5}$) compared to the coarse particle mode ($PM_{10-2.5}$), however $NO_3{^-}$ concentrations were 2.4 times higher in the coarse mode compared to the fine particle mode. During Asian dust days, the concentrations of nss-$Ca^{2+}$ and $NO_3{^-}$ increased to 8.2 and 5.0 times higher in $PM_{10}$, and 3.5 and 6.0 times higher in $PM_{2.5}$, respectively. During haze days, the concentrations of secondary pollutants increased by 3.1-4.7 and 3.2-7.9 in $PM_{10}$ and $PM_{2.5}$, respectively, and they were, respectively, 1.2-2.1 and 0.9-2.1 times higher on mist days. The aerosols were acidified largely by sulfuric and nitric acids, and neutralized mainly by ammonia in the fine particle mode during the haze days, but neutralized by calcium carbonate in coarse particle mode during the Asian dust days. Clustered back trajectory analysis showed that concentrations of nss-$SO_4{^{2-}}$, $NO_3{^-}$, and $NH_4{^+}$ were relatively high when air masses travelled from China.

제주지역 TSP의 기류 유입경로별 조성 변화 (Variation of TSP Compositions in Accordance with the Pathways of Inflowing Air Mass at Jeju Island)

  • 고희정;김원형;이민영;송정민;강창희;김용표
    • 한국대기환경학회지
    • /
    • 제27권3호
    • /
    • pp.347-357
    • /
    • 2011
  • The TSP aerosols were collected at Gosan site of Jeju Island between 2003 and 2007, and their aerosol components were analyzed to examine the variations of chemical compositions with the corresponding pathways of inflowing air parcels. According to the comparison of seasonal aerosol compositions, the soil-originated components showed remarkably high concentrations during spring season. On the other hand, the concentrations of anthropogenic components were somewhat high in spring and summer seasons, but low in fall season. Based on the comparison of TSP compositions in relation to the pathways of inflowing air mass, the concentrations of anthropogenic components (nss-$SO_4^{2-}$, S, $NO_3^-$), soil-originated components (nss-$Ca^{2+}$, Al, Fe, Ca), and the heavy metals (e,g., Mn, Zn, Cr, Pb, Cu, Cd, etc.) have relatively increased with the air mass moving from China continent into Jeju area. Meanwhile, the marine-originated components showed an increasing trend with the air mass coming from North Pacific Ocean. In the seasonal and sectional comparison, the nss-$SO_4^{2-}$, $NO_3^-$, nss-$Ca^{2+}$, and Al showed comparatively high concentrations when the air mass moved from China continent during all seasons. Especially, the $NO_3^-$, nss-$Ca^{2+}$, and Al concentrations were somewhat high when the air mass moved from Korean Peninsula during summer season. It was also recognized that the Na+ concentration were high, when the air mass moved from Pacific Ocean through all seasons.

이차 에어러솔 생성 잠재력 평가를 위한 Potential Aerosol Mass (PAM) 챔버의 제주도 고산 대기분석 적용 (A Preliminary PAM Measurement of Ambient Air at Gosan, Jeju to Study the Secondary Aerosol Forming Potential)

  • 강은하;;김상우;윤순창;정무현;이미혜
    • 한국대기환경학회지
    • /
    • 제27권5호
    • /
    • pp.534-544
    • /
    • 2011
  • The secondary aerosol forming potential of ambient air was first measured with the Potential Aerosol Mass(PAM) chamber at Gosan supersite on Jeju island from October 22 to November 5, 2010. PAM chamber is a small flowthrough photo-oxidation chamber with extremely high OH and $O_3$ levels. The OH exposure in the PAM chamber was $(2{\pm}0.4){\times}10^{11}{\sim}(6{\pm}1.2){\times}10^{11}$ molecules $cm^{-3}$ s and was similar to 2 to 5 days of aging in the atmosphere. By periodically turning on and off UV lamps in the PAM chamber, ambient aerosol and newly formed aerosol (e.g. called as PAM aerosol) was alternately measured. Aerosol number and mass concentration in the range of 10~487 nm in diameter was measured by SMPS 3034. With UV lamps on, the nucleation mode particles smaller than 50 nm in diameters were formed. Their number concentration was greater than 105 $cm^{-3}$, leading to increase in aerosol mass by 0~8 ${\mu}gm^{-3}$. The variations of PAM and ambient aerosols were greatly dependent on characteristics of air masses such as precursor concentrations and degree of aging. This preliminary results suggests that PAM chamber is useful to assess the aerosol formation potential of air mass and its impact on the air quality. The further analysis of data with gaseous and particulate measurements will be done.

동아시아지역에서 GEOS-Chem에 의한 경계조건이 CMAQ 모사 결과에 미치는 영향에 대한 평가 (An Evaluation of the Influence of Boundary Conditions from GEOS-Chem on CMAQ Simulations over East Asia)

  • 최대련;구윤서
    • 한국대기환경학회지
    • /
    • 제29권2호
    • /
    • pp.186-198
    • /
    • 2013
  • The present work is an attempt to improve the performance of a regional air quality model by means of liking it with a global chemistry transport model. The global chemical transport model of GEOS-Chem is used to provide BC (Boundary Condition)s which reflect temporal and spatial variations at boundaries of regional chemical transport model of CMAQ over East Asia. First, GEOS-Chem outputs are evaluated by comparing predicted concentrations with observed monthly data of gas phase species and secondary inorganic aerosols from EANET (Acid Deposition Monitoring Network in East Asia) sites. The results show that predicted PM10 concentrations are in good agreement with the observations. This implies that GEOS-Chem outputs could be used to provide BCs to CMAQ. Simulated daily and monthly mean PM10 concentrations of CMAQ with the linkage of GEOS-Chem's BCs and constant BCs are then evaluated by comparing predicted concentrations with observations at API (Air Pollution Index) sites in China as well as EANET sites in Korea. CMAQ with the GEOS-Chem outputs improves model simulation in depicting observed PM10 concentrations comparing with those with constant BCs. It is also found that influence of aerosol species are largely dependent on the BCs over East Asia and Korea. Mean biases between simulated versus observed daily and monthly mean concentrations of PM10 with the GEOS-chem were improved by 1~8 ${\mu}g/m^3$ in China region, 3.26 ${\mu}g/m^3$ in Korea.

토양 성분이 입자 특성에 미치는 영향: 제주도 고산에서의 1994년 측정결과 모사 (Effects of Crustal Species on Characteristics of Aerosols: Simulation of Measurements at Kosan, Cheju Island, 1994)

  • 김용표;문길주
    • 한국대기환경학회지
    • /
    • 제12권3호
    • /
    • pp.289-296
    • /
    • 1996
  • Effects of crustal species on the characteristics of ambient particles were studied by applying a gas-particle equilibrium model, SCAPE, to the measurements at Kosan, Cheju Island during the spring and summer, 1994. Two cases were simulated; the measured composition was used without any modification (case 1), and the metal ion concentrations originated from crust were subtracted from the measured particle composition (case 2). Total suspended particles (TSPs) were collected by an automatic high volume tape sampler during spring period and by high volume samplers during summer period. The fine particles, PM 2.5, and gaseous volatile species were collected using a filter pack smapler during summer period. The water soluble ion concentrations were analyzed from all the particle samples. According to the simulation results, the effect of crustal elements on the chemical composition of particles is negligible for both TSP particles and PM 2.5 particles. Acidity of particles measured at Kosan, however, is affected by the change of the concentrations of crustal species, stronger effects for TSP particles than for PM 2.5 particles during summer, and stronger effects during summer than spring for TSP particle. The average pH decrease due to the absence of crustal species was about 0.10 for PM 2.5 particle during summer and 1.51 and 0.85 for TSP particles during summer spring, respectively. Water contents of PM 2.5 particles for both cases are comparable to each other. Estimated water content of TSP particles for case 2 is higher than that for case 1 by about 4 $\sim 6 \mum/m^3$ because salts of metal ions are not hygroscopic.

  • PDF

황해상 덕적도의 대기 에어로졸 특성 (Aerosol Characteristics at Tokchok Island in the Yellow Sea)

  • 이승복;배귀남;김용표;진현철;윤용석;문길주
    • 한국대기환경학회지
    • /
    • 제18권4호
    • /
    • pp.305-316
    • /
    • 2002
  • Various air pollutants were measured at Tokchok Island in the Yellow Sea that is about 50 km distant from Incheon since April 1999. This study was undertaken to help understanding the level of air pollution and its distribution characteristics over the Yellow Sea. The geographical characteristics of the air pollution monitoring station and emission inventories of Tokchok Island are introduced. The mass concentrations and chemical compositions of TSP and P $M_{2.5}$ measured until March 2000 are discussed in this paper. The overall average mass concentrations are about 37.2 $\mu\textrm{g}$/㎥ for TSP and 18.7 $\mu\textrm{g}$/㎥ for P $M_{2.5}$ , respectively, which are similar to or a little lower than the values observed in other background sites at Kangwha and Taean. However, they are much lower than those observed at Qingdao in China. The low mass concentration and major anthropogenic ion concentrations in aerosols collected at Tokchok Island show that local sources are not dominant at Tokchok Island. The estimated average fractions of anthropogenic non-sea-salt sulfate to the total sulfate concentration of TSP and P $M_{2.5}$ are greater than 80% for both sizes. It hence suggests that the sulfate be mainly affected by anthropogenic sources. If we consider the average mass ratio of P $M_{2.5}$ to TSP, the mass fractions of anthropogenic species to P $M_{2.5}$ , and the molar ratio of nss S $O_4$$^{2-}$ to total N $O_{3-}$, it may be possible to infer that a part of anthropogenic species measured at Tokchok Island be transported from China. The characteristics of neutralization of nss S $O_4$$^{2-}$ and the particle size of major ions are also discussed.

부산 도심지에서 측정된 에어로졸 농도의 물리적 특성 (Physical Characteristics of Aerosol Concentrations Observed in an Urban Area, Busan)

  • 김연종;김철희
    • 한국환경과학회지
    • /
    • 제19권3호
    • /
    • pp.331-342
    • /
    • 2010
  • Aerosol physical properties have been measured at Pusan National University by using the 16-channel LPC(Laser Particle Counter), and particle characteristics have been examined for the period from Aug. 4 2007 to Dec. 30, 2008. Annual total average, seasonal average, and other averages of the meteorologically classified four categories such as Asian dust, precipitation, foggy, and clear days are respectively described here. Both annually and seasonally averaged number concentration show three peaks at the particle diameter of 0.3, 1.3, and $4{\mu}m$, respectively. However, the first peak for summer season tends to be shifted toward smaller size than other seasons, implying the strong fine particle generation. Meteorological condition shows strong contrast in aerosol concentrations. In Asian dust case, relatively lower number concentrations of fine particles (i.e., smaller than $0.5{\mu}m$) were predominant, while higher concentrations of coarse particles were found particularly for the size bigger than $0.5{\mu}m$. In precipitation day, number concentrations were decreased by approximately 30% due to the removal process of precipitation. Foggy day shows significantly higher concentrations for fine particles, implying the importance of the aerosol condensation process of micro-fine-particle growing to fine-particle. Finally the regressed particle size distribution function was fitted optimally with two log-normal distribution, and discussed the similarities and differences among four categorized cases of the Asian dust, precipitation, foggy, and clear days.