• Title/Summary/Keyword: atmospheric aerosol

Search Result 741, Processing Time 0.03 seconds

Characteristics of Atmospheric Aerosol Optical Thickness over the Northeast Asia Using TERRA/MODIS Data during the Year 2000~2005 (동북아시아 지역에서 TERRA/MODIS 위성자료를 이용한 2000~2005년 동안의 대기 에어러솔 광학두께 변화 특성)

  • Lee, Dong Ha;Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Joon
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.85-96
    • /
    • 2006
  • The six-year (2000~2005) record of aerosol optical thickness (AOT or $\tau$) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) was analyzed over the Northeast Asia. The MODIS AOT standard products (MOD04_L2) over both ocean and land were collected to evaluate the spatial and temporal variability of the atmospheric aerosols over the study region ($32^{\circ}N{\sim}42^{\circ}N$ and $115^{\circ}E{\sim}133^{\circ}E$). The monthly averaged AOT result revealed slight changes(${\pm}0.002{\tau}/month$), which was almost unchangeable, over Korea. In contrast, the large AOT values (> 0.6) and a significant AOT increase (> 0.004 ${\tau}/month$) over East China were observed. For the analysis of spatio-temporal variability of AOT values, study area was divided by six sectors (I: North-East China, II: East China, III: Yellow Sea, IV: Korea Peninsular, V: East Sea, and VI: South Sea and Western part of Japan). The considerable result showed that particularly high AOT contribution was observed over sector I (32.5%) and II (25.5%) where some major urban and industrialized areas and agricultural fields are located and other cases were observed 13.2%, 14.6%, 7.1%, 7.0% over sector III, IV, V, and VI, respectively. In addition, yearly AOT changes based on seasons are observed differently at each sector but increasing trends reveal in summer and fall over all sectors.

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 2: Characteristics of Fog Water Chemistry and Fog Deposition in Northern Japan

  • Yamaguchi, Takashi;Noguchi, Izumi;Watanabe, Yoko;Katata, Genki;Sato, Haruna;Hara, Hiroshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • The fog water chemistry and deposition in northern Japan were investigated by fog water and throughfall measurements in 2010. Fog water was sampled weekly by an active-string fog sampler at Lake Mashu from May to November. Throughfall measurements were conducted using rain gauges under three deciduous trees along the somma of the lake from August to October. The mean fog deposition rate (flux) was calculated using throughfall data to estimate the total fog water deposition amount for the entire sampling period. $NH_4{^+}$ and $SO{_4}^{2-}$ were the most abundant cation and anion, respectively, in the fog water samples. A mean pH of 5.08 in the fog water, which is higher than those in rural areas in Japan, was observed. The [$NH_4{^+}$]/[$SO{_4}^{2-}$] equivalent ratio in fog water was larger than 1.0 throughout the study period, indicating that $NH_3$ gas was the primary neutralizing agent for fog water acidity. The mean rate and total amount of fog water deposition were estimated as 0.15 mm $h^{-1}$ and 164 mm, respectively. The amounts of nitrogen and sulfate deposition via fog water deposition were corresponded to those reported values of the annual deposition amounts via rainfall.

On Recent Variations in Solar Radiation and Daily Maximum Temperature in Summer (여름철 일 최고기온과 일사량의 최근 변동에 관하여)

  • Choi, Mi-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.185-191
    • /
    • 2009
  • Few studies have attempted to analyze variations of daily maximum temperature in the summer whereas many studies have analyzed warming trends in other seasons with respect to greenhouse gases or urban heat islands. We analyzed daily maximum temperature data for the summer season (June to August) at 18 locations in South Korea from 1983 to 2007. Compared to the climatic normal (from 1971 to 2000), an average increase of $0.1^{\circ}C$ was found for the summer daily maximum temperature along with an increase of $0.61MJ\;m^{-2}$ in daily solar radiation. Approximately 65% of the annual variations of the summer daily maximum temperature could be explained by the solar radiance alone. Higher atmospheric transmittance due to lower aerosol concentration (especially of sulfur dioxide) is believed to have caused the recent increase in solar irradiance. Daily maximum temperature of the summer is expected to keep rising if the clean air activities are maintained in the future.

A Review of Clouds and Aerosols (구름과 에어로졸 고찰)

  • Yum, Seong Soo;Kim, Byung Gon;Kim, Sang Woo;Chang, Lim Seok;Kim, Seong Bum
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.253-267
    • /
    • 2011
  • This study summarizes some important results from the studies on clouds and aerosols, and their effects on climate in the northeast Asia that were made mainly by Korean scientists and some other scientists from around the world. Clouds and aerosols are recognized as one of the most important factors that contributes to uncertainties in climate predictions and therefore become the subject of active research in the western developed countries in recent years. However, the researches on clouds and aerosols are very weakly done in Korea except ground based measurements of aerosol physical, chemical and optical properties. These measurements indicate that aerosol loadings in the northeast Asia are generally much higher than other parts of the world. On the other hand, researches on clouds are few in Korea. Satellite and ground remote sensing, numerical modeling and aircraft in-situ measurements of clouds are highly needed for better assessment of the role of clouds on climate in the northeast Asia.

Contributions of Emissions and Atmospheric Physical and Chemical Processes to High PM2.5 Concentrations on Jeju Island During Spring 2018 (2018년 봄철 제주지역 고농도 PM2.5에 대한 배출량 및 물리·화학적 공정 기여도 분석)

  • Baek, Joo-Yeol;Song, Sang-Keun;Han, Seung-Beom;Cho, Seong-Bin
    • Journal of Environmental Science International
    • /
    • v.31 no.7
    • /
    • pp.637-652
    • /
    • 2022
  • In this study, the contributions of emissions (foreign and domestic) and atmospheric physical and chemical processes to PM2.5 concentrations were evaluated during a high PM2.5 episode (March 24-26, 2018) observed on the Jeju Island in the spring of 2018. These analyses were performed using the community multi-scale air quality (CMAQ) modeling system using the brute-force method and integrated process rate (IPR) analysis, respectively. The contributions of domestic emissions from South Korea (41-45%) to PM2.5 on the Jeju Island were lower than those (81-89%) of long-range transport (LRT) from China. The substantial contribution of LRT was also confirmed in conjunction with the air mass trajectory analysis, indicating that the frequency of airflow from China (58-62% of all trajectories) was higher than from other regions (28-32%) (e.g., South Korea). These results imply that compared to domestic emissions, emissions from China have a stronger impact than domestic emissions on the high PM2.5 concentrations in the study area. From the IPR analysis, horizontal transport contributed substantially to PM2.5 concentrations were dominant in most of the areas of the Jeju Island during the high PM2.5 episode, while the aerosol process and vertical transport in the southern areas largely contributed to higher PM2.5 concentrations.

Impact Assessment of COVID-19 on PM2.5 in Busan -Comparative Study in Busan vs. Seoul Metropolitan Area(III) (부산지역 PM2.5의 COVID-19 영향 분석 - 수도권과 비교연구(III))

  • Min-Jun Park;Cheol-Hee Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.205-220
    • /
    • 2023
  • In this study, impact of the COVID-19 outbreak on PM2.5 mass and its five chemical components (NH4+, NO3-, SO42-, OC, EC) in Busan was evaluated, and compared with that of Seoul. The study period over the recent three years was sub-divided into two periods: Pre-COVID (2018~2019) and COVID (2020) periods, and the differences in observed annual and monthly variations between the two periods were explored here. The results indicated that annual mean PM2.5 mass concentrations decreased during the COVID period by 16% in Seoul and 29% in Busan, and the satellite-observed annual average of aerosol optical depth (AOD) over the Korean Peninsula also decreased by approximately more than 10% compared with that of the Pre-COVID period. All of the five chemical components decreased but no particular changes were found in their fractions occupied during the COVID period. However, over the Lock-down period (2020-March), the sulfate fraction decreased in Seoul, mostly reflecting the recent Chinese trends of aerosol characteristics, whereas the nitrate fraction considerably decreased in Busan, which was attributable to the local emission changes and their variabilities in Busan. Other meteorological characteristics such as higher frequencies of easterly winds in the Busan area during the COVID period were also discussed in comparison with those in the Seoul area.

High Atmospheric Loading for $SO_2$ and Sulfate Observed in the Kanto Area, Japan During the Miyakejima Volcanic Eruption

  • Ma, Chang-Jin;Cao, Renqiu;Tohno, Susumu;Kasahara, Mikio
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.69-77
    • /
    • 2006
  • Combined gas and aerosol measurements at a downwind area of the volcanic plume would be essential for helping to access the impact of the volcanic eruption on the local ecosystem and residents. An intensive and the fine time resolution measurement of $SO_2$, sulfate and PM2.5 was made to estimate their distribution in the Kanto area of Japan during the Miyakejima volcanic eruption period. In Tokyo, the 1 hr average $SO_2$ concentration observed before the eruption was 23.9 ppbv, while that of after eruption was 140.4 ppbv. In the Saitama Prefecture, the average concentration of $SO_2$ marked in the present study was two times higher than the average before the volcanic eruption. The PM2.5 mass concentrations in Sitama ranged from 3.8 to $136{\mu}g\;m^{-3}$. Sulfate accounts for $4.4{\sim}39.6%$ of PM2.5 in Sitama. The good correlationship between the concentrations of $SO_2$ and sulfate was obtained. The results of the VAFTAD and HYSPLIT models indicate that $SO_2$, sulfate, and PM2.5 measured in the present study would be expected to be significantly affected by the Miyakejima volcanic plume.

Physicochemical Characteristics of Single Asian Dust Storm Particles

  • Ma, Chang-Jin;Mikio kasahara;Hwang, kyung-Chul;Park, Kum-Chan;Park, Seong-Boo;Lee, Jeong-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E
    • /
    • pp.29-38
    • /
    • 2000
  • For the detailed characterization of atmospheric aerosol, the analysis of single particle is highly valuable. In this study, to investigate the characteristics of single Asian dust storm particles, scanning electron microscope(SEM) coupled with and energy dispersive X-ray microanalyzer(EDX) and micro-PIXE were applied. Sampling was performed at Kyoto University located in Kyoto, Japan, in spring of 1999. Mass concentration during Asian dust storm events was higher roughly 3∼5 times than measured in the season of the highest concentration. Single particles were generally sharp-edged and irregular in shape and contained mostly crustal elements. Significant amount of S in coarse fraction was detected in individual particles. A large particles in coarse fraction existed as the mixture of soil components and S. A good agreement between the result of SEM-EDX analysis and that iof micro-PIXE analysis was obtained in this study.

  • PDF

The Detection of Yellow Sand Dust Using the Infrared Hybrid Algorithm

  • Kim, Jae-Hwan;Ha, Jong-Sung;Lee, Hyun-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.370-373
    • /
    • 2005
  • We have developed Hybrid algorithm for yellow sand detection. Hybrid algorithm is composed of three methods using infrared bands. The first method used the differential absorption in brightness temperature difference between $11\mu m\;and\;12\mu m$ (BID _1), through which help distinguish the yellow sand from various meteorological clouds. The second method uses the brightness temperature difference between $3.7\mu m\;and\;11\mu m$ (BID_2). The technique would be most sensitive to dust loading during the day when the BID _2 is enhanced by reflection of $3.7\mu m$ solar radiation. The third one is a newly developed algorithm from our research, the so-called surface temperature variation method (STY). We have applied the three methods to MODIS for derivation of the yellow sand dust and in conjunction with the Principle Component Analysis (PCA), a form of eigenvector statistical analysis. PCI shows better results for yellow sand detection in comparison with the results from individual method. The comparison between PCI and MODIS aerosols optical depth (AOD) shows remarkable good correlations during daytime and relatively good correlations over the land.

  • PDF

Impacts of Asian Dust on Atmospheric Environment (황사의 대기환경영향)

  • Ghim, Young-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.255-271
    • /
    • 2011
  • ACE-Asia (Asian Pacific Regional Aerosol Characterization Experiment) in spring 2001 was a turning point to trigger international research interest on Asian dust (AD). This basically arose from the lack of research on AD, the important natural phenomenon to characterize the Northeast Asia. In contrast, health risk related to AD has been the primary concern in Korea. Although due in part to severe AD events of 2001~2002, research and mitigation measures on AD in Korea are typically based on the assumption that AD events are increasing in frequency and severity. However, contrary to the trend in Korea, the number of AD days and emission amounts of AD in China have decreased since 1980s. This paper reviews the impacts of AD on ambient air quality and variations in toxic substances during the AD event, reflecting the concern in Korea. While a great amount of dust particles flow into Korea during the AD event, a considerable amount of dust particles are locally generated as well. Since dust particles are mixed with toxic substances as they pass over polluted areas, the levels of toxic substances become lower in dust particles that do not pass over polluted areas. Broadening the research scope on AD is warranted to understand the AD as an important natural phenomenon, irrespective of its associated health risk.