• Title/Summary/Keyword: atmospheric $CO_2$ concentration

Search Result 326, Processing Time 0.021 seconds

An Analysis of Influencing Factors on Ozone Concentration in the Ambient Air in Seoul (서울시 대기중 오존의 오염도와 그 영향인자 분석)

  • Chung, Yong;Jang, Jae-Yeon;Kwon, Sook-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.73-79
    • /
    • 1986
  • This study is carried out to determine the concentration of the ozone and the factors affecting the variation of ozone concentration in the ambient air in Seoul. The one-hour average concentration of ozone $(O_3)$, sulfur dioxide $(SO_2)$, nitrogen oxides (NO and $NO_2$), suspended particulate (TSP), carbon monoxide (CO) and non-methane hydrocarbon (NMHC) at 5 sites in Seoul measured from September to October in 1983 and 1984 were analysed statistically along with meteorological data for the same period. The results were as follows; 1. The average concentrations of ozone at 5 sites during the period ranged from 3.3 to 9.1 ppb, they were below 20 ppb of the ambient air quality standard of Korea. 2. The maximum hourly concentration of ozone occurred between 2 and 3 p.m. in a day and concentration at night were very low but higher concentrations were observed at around 4 a.m. 3. The concentration ratio between NO and $NO_2$ in Seoul was relatively lower than that for the cities of foreign countries reported so far. 4. The ozone concentration has negative correlationships with the concentration of other primary pollutants$(SO_2, NO, NO_2, CO and NMHC)$ in simple regression analyses. 5. The ozone concentration was positively correlated to wind speed, temperature and insolation intensity but negatively correlated to relative humidity. 6. Stepwise multiple regression analysis of the ozone concentration to the pollutants and meteorological factors indicate that insolation intensity and $[NO_2]/[NO]$ were the primary influencing factors. 7. The three factors of insolation intensity, $[NO_2]/[NO] and NO_2$ concentration had a significant combined effect on the ozone concentration $(r^2 = 0.47-0.57)$.

  • PDF

Impact of Climate Change Induced by the Increasing Atmospheric $CO_2$Concentration on Agroclimatic Resources, Net Primary Productivity and Rice Yield Potential in Korea (대기중 $CO_2$농도 증가에 따른 기후변화가 농업기후자원, 식생의 순 1차 생산력 및 벼 수량에 미치는 영향)

  • 이변우;신진철;봉종헌
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.2
    • /
    • pp.112-126
    • /
    • 1991
  • The atmospheric carbon dioxide concentration is ever-increasing and expected to reach about 600 ppmv some time during next century. Such an increase of $CO_2$ may cause a warming of the earth's surface of 1.5 to 4.5$^{\circ}C$, resulting in great changes in natural and agricultural ecosystems. The climatic scenario under doubled $CO_2$ projected by general circulation model of Goddard Institute for Space Studies(GISS) was adopted to evaluate the potential impact of climate change on agroclimatic resources, net primary productivity and rice productivity in Korea. The annual mean temperature was expected to rise by 3.5 to 4.$0^{\circ}C$ and the annual precipitation to vary by -5 to 20% as compared to current normal climate (1951 to 1980), resulting in the increase of possible duration of crop growth(days above 15$^{\circ}C$ in daily mean temperature) by 30 to 50 days and of effective accumulated temperature(EAT=∑Ti, Ti$\geq$1$0^{\circ}C$) by 1200 to 150$0^{\circ}C$. day which roughly corresponds to the shift of its isopleth northward by 300 to 400 km and by 600 to 700 m in altitude. The hydrological condition evaluated by radiative dryness index (RDI =Rn/ $\ell$P) is presumed to change slightly. The net primary productivity under the 2$\times$$CO_2$ climate was estimated to decrease by 3 to 4% when calculated without considering the photosynthesis stimulation due to $CO_2$ enrichment. Empirical crop-weather model was constructed for national rice yield prediction. The rice yields predicted by this model under 2 $\times$ $CO_2$ climatic scenario at the technological level of 1987 were lower by 34-43% than those under current normal climate. The parameters of MACROS, a dynamic simulation model from IRRI, were modified to simulate the growth and development of Korean rice cultivars under current and doubled $CO_2$ climatic condition. When simulated starting seedling emergence of May 10, the rice yield of Hwaseongbyeo(medium maturity) under 2 $\times$ $CO_2$ climate in Suwon showed 37% reduction compared to that under current normal climate. The yield reduction was ascribable mainly to the shortening of vegetative and ripening period due to accelerated development by higher temperature. Any simulated yields when shifted emergence date from April 10 to July 10 with Hwaseongbyeo (medium maturity) and Palgeum (late maturity) under 2 $\times$ $CO_2$ climate did not exceed the yield of Hwaseongbyeo simulated at seedling emergence on May 10 under current climate. The imaginary variety, having the same characteristics as those of Hwaseongbyeo except growth duration of 100 days from seedling emergence to heading, showed 4% increase in yield when simulated at seedling emergence on May 25 producing the highest yield. The simulation revealed that grain yields of rice increase to a greater extent under 2$\times$ $CO_2$-doubled condition than under current atmospheric $CO_2$ concentration as the plant type becomes more erect.

  • PDF

Variations of the PM10 Concentrations Observed in Eleven Cities in South Korea between 1995 and 2000 (한반도 11개 도시의 1995~2000년 PM10 농도 변화 경향)

  • 진윤하;구해정;김봉만;김용표;박순웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.231-245
    • /
    • 2003
  • Hourly PM$_{10}$ concentrations measured at 11 sites in Seoul and 10 sites in the large cities over South Korea for the period from March 1995 to February 2000 are analyzed to examine annual trend and monthly variations of the PM$_{10}$ concentrations. Further analysis has been carried out by using the one year data from March 1999 to February 2000 to see the seasonal variation, diurnal variation and weekly variation of the seasonally averaged PM$_{10}$ concentrations at each site. Weekly variations of the CO concentrations at the same sites for the same one year period are compared with that of the PM$_{10}$ concentration. There is no significant annual trend in the variation of the PM$_{10}$ concentration at all the sites analyzed. The seasonal and monthly mean concentrations show a minimum concentration in summer and alternative maximum concentration in spring and winter for most sites. The diurnal variation of the seasonally averaged mean PM$_{10}$ concentrations is strongly affected by traffic loads and meteorological conditions. The weekly variation of seasonal averaged concentrations of CO and PM$_{10}$ shows a high concentration for weekdays in spring, autumn and winter while high concentration for weekends in summer.nds in summer.

Atmospheric $Co_2$sequestration by urban greenspace (도시녹지에 의한 대기 $Co_2$의 흡수 -춘천시를 대상으로-)

  • 조현길;윤영활;이기의
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.23 no.3
    • /
    • pp.80-93
    • /
    • 1995
  • The purpose of this study was to assess functioni fo urban greenspace to reduce atmospheric CO\sub 2\ concentration. The study quantified carbon storage in urban greenspace and carbon emission by fossil fuel consumptio in Chuncheon. The amount of carbon storage in vegetation by land use type was 0.02kg/$m^2$ for commercial land, 4.36kg/$m^2$ for natural land, and 0.54kg/$m^2$ for the other urban lands. In 1994, total amount of carbon emission by fossil fuel consumption was about 257,358 metric tons, and the per capita carbon emission was 1.4 metric ton. Total amount of carbon storage in vegetation was 42,942 metric tons, approximately 17% of the carbon emission. This study excluded quantification of carbon storage in soils. The role of urban greenspace to sequester atomspheric carbon might be much greater, if a soil greenspace to sequester atmospheric carbon might be much greater, if a soil greenspace to sequester atmospheric carbon might be much greater, if a soil carbon storage is included quantification of carbon storage is included. However, increasing coverage of trees and managing them for healthy growth would not be sufficient for avoiding adverse impacts by future climate change. Additional measures should be followed such as an increase of energy use efficiency and development of substitute energy.

  • PDF

Variability of the PM10 Concentration in the Urban Atmosphere of Sabah and Its Responses to Diurnal and Weekly Changes of CO, NO2, SO2 and Ozone

  • Wui, Jackson CHANG Hian;Pien, CHEE Fuei;Kai, Steven KONG Soon;SENTIAN, Justin
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.109-126
    • /
    • 2018
  • This paper presents seasonal variation of $PM_{10}$ over five urban sites in Sabah, Malaysia for the period of January through December 2012. The variability of $PM_{10}$ along with the diurnal and weekly cycles of CO, $NO_2$, $SO_2$, and $O_3$ at Kota Kinabalu site were also discussed to investigate the possible sources for increased $PM_{10}$ concentration at the site. This work is crucial to understand the behaviour and possible sources of $PM_{10}$ in the urban atmosphere of Sabah region. In Malaysia, many air pollution studies in the past focused in west Peninsular, but very few local studies were dedicated for Sabah region. This work aims to fill the gap by presenting the descriptive statistics on the variability of $PM_{10}$ concentration in the urban atmosphere of Sabah. To further examine its diurnal and weekly cycle pattern, its responses towards the variations of CO, $NO_2$, $SO_2$, and ozone were also investigated. The highest mean value of $PM_{10}$ for the whole study period is seen from Tawau ($35.7{\pm}17.8{\mu}g\;m^{-3}$), while the lowest is from Keningau ($31.9{\pm}18.6{\mu}g\;m^{-3}$). The concentrations of $PM_{10}$ in all cities exhibited seasonal variations with the peak values occurred during the south-west monsoons. The $PM_{10}$ data consistently exhibited strong correlations with traffic related gaseous pollutants ($NO_2$, and CO), except for $SO_2$ and $O_3$. The analysis of diurnal cycles of $PM_{10}$ levels indicated that two peaks were associated during the morning and evening rush hours. The bimodal distribution of $PM_{10}$, CO, and $NO_2$ in the front and at the back of ozone peak is a representation of urban air pollution pattern. In the weekly cycle, higher $PM_{10}$, CO, and $NO_2$ concentrations were observed during the weekday when compared to weekend. The characteristics of $NO_2$ concentration rationed to CO and $SO_2$ suggests that mobile sources is the dominant factor for the air pollution in Kota Kinabalu; particularly during weekdays.

Experimental Study on Accelerated Carbonation Characteristics of OPC Paste for CSC-Based Low Carbon Precast Concrete Products (CSC 기반 저탄소 콘크리트 2차제품 제조를 위한 OPC 페이스트의 촉진탄산화 특성에 관한 실험적 연구)

  • Yoon, Jun-Tae;Kim, Young-Jin;Sim, Sang-Rak;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.285-295
    • /
    • 2024
  • This study investigated the impact of accelerated carbonation on Ordinary Portland Cement(OPC) paste that had undergone steam curing at 500℃·hr. Two carbonation environments were examined: atmospheric carbonation(1atm, 20% CO2) and pressurized carbonation(5atm, 99% CO2). Chemical analysis using X-ray diffraction(XRD) and Fourier-Transform Infrared spectroscopy(FT-IR) were conducted, along with physical characterization via scanning electron microscopy(SEM) and compressive strength testing. Results indicated that atmospheric carbonation with 20% CO2 concentration significantly densified the internal microstructure of the OPC paste, leading to enhanced compressive strength. Conversely, pressurized carbonation at 5atm with 99% CO2 concentration resulted in rapid densification of the surface structure, which hindered CO2 diffusion into the sample. This limited the extent of carbonation and prevented the improvement of physical properties.

The Analysis of Spatial Distribution of Ozone in the Southern Coast of Korea using the Aircraft (2009, Summer) (항공기를 이용한 남해안 지역의 오존 공간분포 조사 (2009년, 여름철))

  • Seo, Seok-Jun;Kim, So-Young;Lee, Min-Do;Choi, Jin-Soo;Kim, Su-Yeon;Lee, Seok-Jo;Kim, Jeong-Soo;Lee, Gang-Woong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.12-21
    • /
    • 2012
  • The purpose of this study is to understand distribution of ozone concentration in the south coastal region of Korea by evaluating ozone spatial distribution in the upper air using aircraft. Sampling was carried out from May to August in 2009. The average concentration of ozone in the upper air was ranged from 32.3~90.8 ppb with its maximum concentration of 132 ppb. When it comes to the spatial distribution of ozone, ambient concentration was high in the air, 1,000 m and 500 m above the southern sea near the Gwangyang Bay area and emission sources, respectively. Daily mean concentration of NOy was 6.7~24.2 ppb and that of CO was 0.152~0.487 ppm. In addition, the concentration was appeared to be relatively high in the upper air of industrial regions and the southern seas. Meanwhile, the concentration of both $NO_y$ and CO was high in the upper air of the emission sources regardless of latitude. As for PAN, its daily mean concentration ranged between 0.1 and 0.6 ppb with overall mean concentration of 0.2 ppb. The average concentration of VOCs was 48 ppb, and the concentration of toluene and m,p-Xylene were higher than other components.

Influence of Promoters on the Tungsten - Catalysts in Hydrodenitrogenation of Pyridine (Pyridine의 수첨탈질 반응에 있어서 텅스텐 촉매에 대한 조촉매의 영향)

  • 신동헌;박종희;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1987
  • A series of supported sulfided Ni-W/$\gamma-Al_2O_3$ and Co-W/$\gamma-Al_2O_3$ catalysts with different nickel and cobalt contents were studied in the hydrodenitrogenation of pyridine dissolved in n-heptane. The ranges of experimental conditions were at the temperatures between 453 and 753 K, and the pressures between 30 and 50 Bar. The catalytic activities with different nickel and cobalt contents were shown to be maximum at Ni/Ni+W = 0.2 - 0.3, Co/Co+W = 0.3 - 0.4. Pyridine conversion increased with pressure and temperature and the step of piperidine formation was found to be irreversible. The reaction orders in Ni-W/$\gamma-Al_2O_3$ and Co-W/$\gamma-Al_2O_3$ catalysts were the first with respect to pyridine and reaction rate constants decreased with increase of initial pyridine concentration and their activation energies were 12.98 and 9.23 kcal/mol, respectively.

  • PDF

Atmospheric Background Values at Dokdo Island, Korea (독도에서의 대기 background 농도)

  • LEE Dong-In
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.80-86
    • /
    • 1995
  • To investigate the background concentration of air pollutants (SO_2,\;CO,\;NO_2,\;O_3,\;TSP)$ and the composition of atmospheric aerosols, air samplings using teflon bags and a high volume air sampler were accomplished from 7 to 8 lune 1991 (first time) and from 25 to 26 June 1992 (second time) at the top of Dokdo island, Korea. During observation periods, mean concentrations of $SO_2,\;CO'\;NO_2\;and\;O_3$ gases were 2.3 ppb, 5.57 ppm, 6 ppb and 7 ppb, respectively, and mean concentration of TSP using a high volume air sampler was $153{\mu}g/m^3$. The composition of atmospheric aerosols by SEM-EMAX analyses were mostly Na, Cl and Si, and their sizes were more than $1{\mu}m$ diameter. From the results, it is found that atmospheric background values at Dokdo island is influenced by oceanic water quality evaporated from sea surface water, and this island has to be used as a stationary observation site for meteorological and air quality data.

  • PDF

Analysis of Variation Characteristics of Greenhouse Gases in the Background Atmosphere Measured at Gosan, Jeju (한반도 배경대기 중 온실기체의 농도 변동 특성 분석)

  • Ju, Ok-Jung;Cha, Jun-Seok;Lee, Dong-Won;Kim, Young-Mi;Lee, Jung-Young;Park, Il-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.487-497
    • /
    • 2007
  • Increase of the greenhouse gases emissions during last century has led remarkable changes in our environment and climate system. Continuous monitoring of atmospheric constituents over the world is positively necessary to understand these changes around us. The concentrations of greenhouse gases ($CO_2,\;CH_4,\;N_2O,\;CFCs$) have been continuously measured at Global Climate Change Monitoring station in Gosan, Jeju since January, 2002. In this study, the variation characteristics of greenhouse gases as well as their annual, seasonal and diurnal trend using the data from January, 2002 to December, 2005 were analyzed. The raw data which was used in the analysis were validated with the methods recommended by WDCGG (World Data Center for Greenhouse Gases). The concentration of $CO_2$ was increasing continuously by 2.1 ppm/year, while $CH_4$ did not show any increasing or decreasing trend clearly for 4 years. The concentration of $N_2O$ was slightly increasing and CFCs were decreasing except CFC-12 which has longer lifetime compared with other CFCs. The variations of the greenhouse gases at Gosan were shown to be consistent with the global trend. But the concentration level of $CO_2$ in Korea was more or less higher than abroad.