• Title/Summary/Keyword: asymptotic a priori estimate method

Search Result 3, Processing Time 0.015 seconds

GLOBAL ATTRACTOR FOR A CLASS OF QUASILINEAR DEGENERATE PARABOLIC EQUATIONS WITH NONLINEARITY OF ARBITRARY ORDER

  • Tran, Thi Quynh Chi;Le, Thi Thuy;Nguyen, Xuan Tu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.447-463
    • /
    • 2021
  • In this paper we study the existence and long-time behavior of weak solutions to a class of quasilinear degenerate parabolic equations involving weighted p-Laplacian operators with a new class of nonlinearities. First, we prove the existence and uniqueness of weak solutions by combining the compactness and monotone methods and the weak convergence techniques in Orlicz spaces. Then, we prove the existence of global attractors by using the asymptotic a priori estimates method.

GLOBAL ATTRACTOR FOR A SEMILINEAR STRONGLY DEGENERATE PARABOLIC EQUATION WITH EXPONENTIAL NONLINEARITY IN UNBOUNDED DOMAINS

  • Tu, Nguyen Xuan
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.423-443
    • /
    • 2022
  • We study the existence and long-time behavior of weak solutions to a class of strongly degenerate semilinear parabolic equations with exponential nonlinearities on ℝN. To overcome some significant difficulty caused by the lack of compactness of the embeddings, the existence of a global attractor is proved by combining the tail estimates method and the asymptotic a priori estimate method.

UNIFORM ATTRACTORS FOR NON-AUTONOMOUS NONCLASSICAL DIFFUSION EQUATIONS ON ℝN

  • Anh, Cung The;Nguyen, Duong Toan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1299-1324
    • /
    • 2014
  • We prove the existence of uniform attractors $\mathcal{A}_{\varepsilon}$ in the space $H^1(\mathbb{R}^N){\cap}L^p(\mathbb{R}^N)$ for the following non-autonomous nonclassical diffusion equations on $\mathbb{R}^N$, $$u_t-{\varepsilon}{\Delta}u_t-{\Delta}u+f(x,u)+{\lambda}u=g(x,t),\;{\varepsilon}{\in}(0,1]$$. The upper semicontinuity of the uniform attractors $\{\mathcal{A}_{\varepsilon}\}_{{\varepsilon}{\in}[0,1]}$ at ${\varepsilon}=0$ is also studied.