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UNIFORM ATTRACTORS FOR NON-AUTONOMOUS

NONCLASSICAL DIFFUSION EQUATIONS ON R
N

Cung The Anh and Nguyen Duong Toan

Abstract. We prove the existence of uniform attractors Aε in the space
H1(RN )∩Lp(RN ) for the following non-autonomous nonclassical diffusion
equations on RN ,

ut − ε∆ut −∆u+ f(x, u) + λu = g(x, t), ε ∈ (0, 1].

The upper semicontinuity of the uniform attractors {Aε}ε∈[0,1] at ε = 0
is also studied.

1. Introduction

In this paper we consider the following non-autonomous equation

(1.1)

{

ut − ε∆ut −∆u+ f(x, u) + λu = g(t, x), x ∈ R
N , t > τ,

u|t=τ = uτ ,

where ε ∈ [0, 1], the nonlinearity f and the external force g satisfy some certain
conditions specified later. This equation is known as the nonclassical diffusion
equation when ε > 0, and the reaction-diffusion equation when ε = 0.

Nonclassical diffusion equation arises as a model to describe physical phe-
nomena, such as non-Newtonian flows, soil mechanic, and heat conduction
(see, e.g., [1, 7, 13, 14]). The long-time behavior of solutions to problem
(1.1) has been studied extensively in recent years, for both autonomous case
[10, 11, 16, 18] and non-autonomous case [2, 3, 11]. However, to the best of our
knowledge, most existing results related to the problem are valid in bounded
domains, except the recent work [3] where the existence of pullback attractors
of the problem (1.1) on R

N was proved. In this paper we will study the exis-
tence and upper semicontinuity of uniform attractors of a family of processes
associated to problem (1.1) in the case of unbounded domains, the nonlin-
earity of polynomial type, and the external force g depending on time t. To
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study the existence of weak solutions to problem (1.1), we assume the following
conditions:

(H1) The continuous nonlinearity f(x, u) satisfies

(1.2) f(x, u)u ≥ α1|u|
p − β1(x),

(1.3) |f(x, u)| ≤ α2|u|
p−1 + β2(x),

for some p ≥ 2, where α1, α2 > 0, β1 ∈ L1(RN ) and β2 ∈ L
p

p−1 (RN )
are two nonnegative functions. Moreover, we assume that

(1.4) f ′
u(x, u) ≥ −ℓ,

where ℓ is a positive constant. For F (x, u) =
∫ u

0 f(x, τ)dτ , we assume
that

(1.5) α3|u|
p − β3(x) ≤ F (x, u) ≤ α4|u|

p + β4(x),

where α3, α3 > 0 and β3, β4 ∈ L1(RN ) are nonnegative functions.
(H2) The external force g ∈ L2

b(R;L
2(RN )), that is, g ∈ L2

loc(R;L
2(RN ))

satisfying

(1.6) sup
t∈R

∫ t+1

t

‖g(s)‖2L2(RN )ds < +∞.

The main aim of this paper is to prove the existence of uniform attractors
Aε, ε ∈ [0, 1], for problem (1.1) on the whole space R

N and to prove the
upper semicontinuity of {Aε}ε∈[0,1] at ε = 0. As we know, there are two main

difficulties in studying problem (1.1) on R
N in the case ε > 0. The first one is

the unboundedness of the domain R
N , this makes Sobolev embeddings are no

longer compact. The second one is the appearance of the term −ε∆ut, then
if the initial datum uτ belongs to H1(RN ) ∩ Lp(RN ), the solution with initial
condition u(τ) = uτ is always inH1(RN )∩Lp(RN ) and has no higher regularity,
which is similar to hyperbolic equations. These bring some essential difficulties
in proving the existence of solutions and existence of uniform attractors. On the
other hand, since uniform attractors are not “invariant” like global attractors,
it introduces some significant difficulty when one wants to show the upper
semicontinuity of a family of uniform attractors {Aε}ε∈[0,1] with respect to the
parameter ε.

Let us describe the method used in this paper. First, the existence of a
unique weak solution is proved by the Galerkin approximation and the com-
pactness method. Then, we show the existence of uniform attractors in var-
ious spaces under some stronger conditions of the external force g, namely
conditions (H2’) and (H2”), which were given in Section 3. Under the con-
dition (H2’) of g, using the so-called “tail estimates” method, which was in-
troduced by B. Wang in [15], we first prove the existence of an (H1(RN ) ∩
Lp(RN ), L2(RN ))-uniform attractor. Next, under condition (H2”) of g, us-
ing the asymptotic a priori estimate method in [9], we prove the asymp-
totic compactness in Lp(RN ) of the corresponding process, and thus obtain
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the existence of an (H1(RN ) ∩ Lp(RN ), Lp(RN ))-uniform attractor. After
that, by verifying Condition (C) introduced in [8] we get the existence of an
(H1(RN )∩Lp(RN ), H1(RN )∩Lp(RN ))-uniform attractor. Finally, by using the
structure of uniform attractors, that is, a uniform attractor can be viewed as
a union of kernel sections (see Definition 2.4), and the continuous dependence
of solutions to problem (1.1) on ε as ε → 0+ established in Lemma 5.1, we
prove the upper semicontinuity of the family of uniform attractors {Aε}ε∈[0,1]

at ε = 0.
The paper is organized as follows. In Section 2, for convenience of the

reader, we recall some results on uniform attractors and the space of transla-
tion bounded functions. Section 3 proves the existence and weak continuity
of a family of processes associated to the problem. In Section 4, we prove the
existence of uniform attractors Aε for the family of processes in various spaces.
The upper semicontinuity of uniform attractors {Aε}ε∈[0,1] at ε = 0 is investi-
gated in Section 5. In the last section, we give some relationships between the
above uniform attractor, the pullback attractor obtained in [3], and the global
attractor formally obtained when the external force is time-independent.

Throughout this paper, we denote by ‖ · ‖, (·, ·) the norm and scalar prod-
uct in L2(RN ), respectively. We denote by C an arbitrary constant, which is
different from line to line, even in a same line.

2. Preliminaries

2.1. Uniform attractors

Let Σ be a parameter set, X,Y be two Banach spaces. A family {Uσ(t, τ),
t ≥ τ , τ ∈ R}, σ ∈ Σ, is said to be a family of processes from X to Y if for each
σ ∈ Σ, {Uσ(t, τ)} is a process, that is, the two-parameter family of mappings
{Uσ(t, τ)} from X to Y satisfies

Uσ(t, s)Uσ(s, τ) = Uσ(t, τ), ∀t ≥ s ≥ τ, τ ∈ R,

Uσ(τ, τ) = Id, the identity operator, τ ∈ R,

where Σ is called the symbol space, σ ∈ Σ is the symbol. Denote by B(X) the
set of all bounded subsets of X .

Definition 2.1. A set B0 ∈ B(Y ) is said to be an (X,Y )-uniform (w.r.t.
σ ∈ Σ) absorbing set for {Uσ(t, τ)}σ∈Σ, if for any τ ∈ R, and B ∈ B(X), there
exists T0 ≥ τ such that

⋃

σ∈Σ Uσ(t, τ)B ⊂ B0 for all t ≥ T0.

Definition 2.2. A family of processes {Uσ(t, τ)}σ∈Σ is called (X,Y )-uniformly
(w.r.t. σ ∈ Σ) asymptotically compact if for any τ ∈ R, any B ∈ B(X), we have
{Uσn

(tn, τ)xn} is relatively compact in Y , where {xn} ⊂ B, {tn} ⊂ [τ,+∞),
tn → +∞ and {σn} ⊂ Σ are arbitrary.

Definition 2.3. A subset AΣ ⊂ Y is said to be an (X,Y )-uniform attractor
of the family of processes {Uσ(t, τ)}σ∈Σ if
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(1) AΣ is compact in Y ;
(2) for an arbitrary fixed τ ∈ R and B ∈ B(X) we have

lim
t→∞

(sup
σ∈Σ

(distY (Uσ(t, τ)B,AΣ)) = 0,

where distE(·, ·) denotes the Hausdorff semidistance in a Banach space
E

distE(A,B) = sup
x∈A

inf
y∈B

‖x− y‖E;

(3) if A′
Σ is a closed subset of Y satisfying (2), then AΣ ⊂ A′

Σ.

Definition 2.4. The kernel K of a process {U(t, τ)} acting on X consists of
all bounded complete trajectories of the process {U(t, τ)}:

K = {u(·) | U(t, τ)u(τ) = u(t), dist(u(t), u(0)) ≤ Cu, ∀t ≥ τ, τ ∈ R}.

For s ∈ R, the set K(s) = {u(s) | u(·) ∈ K} is said to be kernel section at time
s.

We will use the following result on the existence and structure of bi-spaces
uniform attractors.

Theorem 2.1 ([4]). Assume that the family of processes {Uσ(t, τ)}σ∈Σ satisfies

the following conditions:

(1) Σ is weakly compact, and {Uσ(t, τ)}σ∈Σ is (X × Σ, Y )-weakly contin-

uous, that is, for any fixed t ≥ τ , the mapping (u, σ) 7→ Uσ(t, τ)u is

weakly continuous in Y . Moreover, there is a weakly continuous semi-

group {T (h)}h≥0 acting on Σ satisfying

T (h)Σ = Σ, Uσ(t+ h, τ + h) = UT (h)σ(t, τ), ∀σ ∈ Σ, t ≥ τ, h ≥ 0;

(2) {Uσ(t, τ)}σ∈Σ has an (X,Y )-uniform (w.r.t. σ ∈ Σ) absorbing set B0;
(3) {Uσ(t, τ)}σ∈Σ is (X,Y )-uniformly (w.r.t. σ ∈ Σ) asymptotically com-

pact.

Then it possesses an (X,Y )-uniform attractor AΣ, and

AΣ =
⋃

σ∈Σ

Kσ(s), ∀s ∈ R,

where Kσ(s) is the kernel section at time s of the process Uσ(t, τ).

2.2. The translation bounded functions

Definition 2.5. Let E be a reflexive Banach space. A function ϕ ∈ L2
loc(R; E)

is said to be translation bounded if

‖ϕ‖2b = ‖ϕ‖2L2

b
(R;E) = sup

t∈R

∫ t+1

t

‖ϕ‖2Eds <∞.

For g ∈ L2
b

(

R;L2(RN )
)

, we denote by Hw(g) the closure of the set {g(· +

h) | h ∈ R} in the space L2
b(R;L

2(RN )) with the weak topology. The following
results were proved in [5].



NONCLASSICAL DIFFUSION EQUATIONS ON R
N 1303

Lemma 2.2 ([5, Chapter 5, Proposition 4.2]).

(1) For all σ ∈ Hw(g), ‖σ‖
2
b ≤ ‖g‖2b;

(2) The translation group {T (h)} is weakly continuous on Hw(g);
(3) T (h)Hw(g) = Hw(g) for h ≥ 0;
(4) Hw(g) is weakly compact.

3. Existence and weak continuity of the family of associated
processes

Definition 3.1. A function u(t, x) is called a weak solution of problem (1.1)
on the interval [τ, T ] if

u ∈ C([τ, T ];H1(RN )) ∩ Lp(τ, T ;Lp(RN )), ut ∈ L2(τ, T ;H1(RN )),

u(x, τ) = uτ (x) for a.e. x ∈ R
N ,

and
∫ T

τ

∫

RN

utϕ+ ε

∫ T

τ

∫

RN

∇ut∇ϕ+

∫ T

τ

∫

RN

∇u∇ϕ

+

∫ T

τ

∫

RN

f(x, u)ϕ+ λ

∫ T

τ

∫

RN

uϕ =

∫ T

τ

∫

RN

g(s)ϕ

for all test functions ϕ ∈ C∞([τ, T ]× R
N ).

Theorem 3.1. Assume that f satisfies condition (H1), g satisfies condition

(H2). Then for any uτ ∈ H1(RN ) ∩ Lp(RN ), any σ ∈ Hw(g) and any T > τ ,

τ ∈ R given, problem (1.1) (with σ in place of g) has a unique weak solution

u on [τ, T ] and the weak solution depends continuously on the initial data.

Moreover, for any t > τ , we have

(3.1)

‖u(t)‖2 + ε‖∇u(t)‖2 ≤ C

(

e−δ(t−τ)
(

‖uτ‖
2 + ε‖∇uτ‖

2
)

+ 1 +
1

1− e−δ
‖g‖2b

)

,

where δ = min{1, λ}.

Proof. Although the existence of a weak solution was proved in [3], we present
here another (simpler) proof for the completeness and convenience of the reader.

i) Existence. For each integer n ≥ 1, we denote by

un(t) =

n
∑

j=1

γnj(t)wj ,

a solution of

(3.2)















d

dt
(un, wj) = − ε(∇∂tun,∇wj)− (∇un,∇wj)− 〈f(x, un), wj〉

− λ(un, wj) + (σ(t), wj),

(un(τ), wj) = (uτ , wj), j = 1, . . . , n,
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where {wj : j ≥ 1} ⊂ H1(RN )∩Lp(RN ) is a Hilbert basis of L2(RN ) such that
span{wj}j≥1 is dense in H1(RN ) ∩ Lp(RN ). In (3.2), replacing wj by un, we
get

(3.3)

1

2

d

dt
(‖un‖

2 + ε‖∇un‖
2) + ‖∇un‖

2 +

∫

RN

f(x, un)undx+ λ‖un‖
2

=

∫

RN

σ(t)undx.

By (1.2), we have

(3.4)

∫

RN

f(x, un)undx ≥ α1‖un‖
p
Lp(RN ) − ‖β1‖L1(RN ).

Applying the Cauchy inequality, we have

(3.5)

∫

RN

σ(t)undx ≤ ‖σ(t)‖‖un‖ ≤
1

2λ
‖σ(t)‖2 +

λ

2
‖un‖

2.

Combining (3.3)-(3.5), we get

(3.6)

d

dt
(‖un‖

2 + ε‖∇un‖
2) + 2‖∇un‖

2 + 2α1‖un‖
p
Lp(RN )

≤
1

λ
‖σ(t)‖2 + 2‖β1‖L1(RN ).

Integrating (3.6) from τ to t, t ∈ [τ, T ], we have

‖un(t)‖
2 + ε‖∇un(t)‖

2 + 2

∫ t

τ

‖∇un(s)‖
2ds+ 2α1

∫ t

τ

‖un(s)‖
p
Lp(RN )ds

≤ ‖un(τ)‖
2 + ε‖∇un(τ)‖

2 +
1

λ

∫ T

τ

‖σ(s)‖2ds+ 2(T − τ)‖β1‖L1(RN ).

This inequality implies that

(3.7) {un} is bounded in L∞(τ, T ;H1(RN )) ∩ Lp(τ, T ;Lp(RN )).

Then, there exists a subsequence of {un} (still denoted by {un}) such that

(3.8) un ⇀ u weakly-star in L∞(τ, T ;H1(RN )).

We deduce in particular from (3.7) that

(3.9) ∆un ⇀ ∆u in L2(τ, T ;H−1(RN )).

On the other hand, replacing wj by ∂tun in (3.2), we get
(3.10)

‖∂tun‖
2 + ε‖∇∂tun‖

2 +
1

2

d

dt

(

‖∇un‖
2 + λ‖un‖

2 + 2

∫

RN

F (x, un)dx

)

=

∫

RN

σ(t)∂tundx ≤
1

2
‖σ(t)‖2 +

1

2
‖∂tun‖

2.

Integrating (3.10) from τ to T , we obtain

{∂tun} is bounded in L2(τ, T ;H1(RN )),
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thus

(3.11) ∂tun ⇀ ut in L
2(τ, T ;H1(RN )),

and

(3.12) ∆∂tun ⇀ ∆ut in L
2(τ, T ;H−1(RN )),

up to a subsequence. Using (1.3), for p′ = p
p−1 , we get

(3.13)

∫

RN

|f(x, un)|
p′

dx ≤

∫

RN

(

α2|un|
p−1 + β2(x)

)p′

dx

≤ Cp′

(

α2‖un‖
p
Lp(RN )

+ ‖β2‖
p′

Lp′(RN )

)

.

From (3.7) and (3.13) we find that

(3.14) {f(., un)} is bounded in Lp′

(τ, T ;Lp′

(RN )),

thus

(3.15) f(·, un)⇀ χ in Lp′

(τ, T ;Lp′

(RN )), up to a subsequence.

We will prove that χ = f(x, u). For each m ≥ 1, we denote Bm = {x ∈ R
N :

|x| ≤ m}. Let θ ∈ C1([0,+∞)) be a function such that 0 ≤ θ ≤ 1, θ|[0,1] = 1
and θ(s) = 0 for all s ≥ 2. For each n and m we define

vn,m(x, t) = θ

(

|x|2

m2

)

un(x, t).

We obtain from (3.7) that, for all m ≥ 1, the sequence {vn,m}n≥1 is bounded
in L∞ (

τ, T ;H1
0 (B2m)

)

∩ Lp (τ, T ;Lp(B2m)). As B2m is a bounded set, the

embedding H1
0 (B2m) →֒ L2(B2m) is compact. Then, by Theorem 13.3 and

Remark 13.1 in [12] we obtain that

{vn,m} is precompact in L2(τ, T ;L2(B2m)),

and thus

{un|Bm
} is precompact in L2

(

τ, T ;L2(Bm)
)

.

By a diagonal procedure, using (3.8), we deduce that there exists a subsequence
of {un} (still denoted by {un}) such that

un → u a.e. in Bm × (τ,+∞) as n→ +∞, ∀m ≥ 1.

Then, since f is continuous,

f(x, un) → f(x, u) a.e. in Bm × (τ,+∞),

and {f(x, un)} is bounded in Lp′

(τ, T ;Lp′

(Bm)), by Lemma 1.3 in [6, Chapter
1], we have

f(x, un)⇀ f(x, u) in Lp′

(τ, T ;Lp′

(Bm)).

From (3.14)

f(x, un)⇀ χ|Bm×(τ,T ) in L
p′

(τ, T ;Lp′

(Bm)).
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Hence

χ = f(x, u) a.e. in Bm × (τ, T ), ∀m ≥ 1,

and thus, taking into account that
⋃∞

m=1Bm = R
N , we obtain

(3.16) χ = f(x, u) a.e. in R
N × (τ, T ).

Now, combining (3.8), (3.9), (3.11), (3.12), (3.15) and (3.16) we see that u
satisfies

ut−ε∆ut−∆u+f(x, u)+λu = σ(t) in H−1(RN )+Lp′

(RN ) for a.e. t ∈ [τ, T ].

By standard arguments, we can check that u satisfies the initial condition
u(τ) = uτ , and this implies that u is a weak solution of problem (1.1).

ii) Uniqueness and continuous dependence. We assume that u1 and u2 are
two solutions subject to initial data u1(τ) and u2(τ), respectively. Denote
w = u1 − u2, we have

(3.17) wt − ε∆wt −∆w + f(x, u1)− f(x, u2) + λw = 0.

Taking the inner product of (3.17) in L2(RN ) with w, then using assumption
(1.4), we see that

d

dt
(‖w‖2 + ε‖∇w‖2) + 2‖∇w‖2 + 2λ‖w‖2 ≤ 2ℓ‖w‖2 ≤ 2ℓ(‖w‖2 + ε‖∇w‖2).

By the Gronwall inequality, we obtain

‖w(t)‖2 + ε‖∇w(t)‖2 ≤ e2ℓ(T−τ)(‖w(τ)‖2 + ε‖∇w(τ)‖2).

This proves the uniqueness (when u1(τ) = u2(τ)) and the continuous depen-
dence on the initial data of the weak solution.

iii) The a priori estimate (3.1). Multiplying (1.1) by u(t) and integrating
over RN , we get

1

2

d

dt

(

‖u(t)‖2 + ε‖∇u(t)‖2
)

+ ‖∇u(t)‖2 + λ‖u(t)‖2 +

∫

RN

f(x, u(t))u(t)

=

∫

RN

σ(t)u(t).

Using (1.2), the Hölder and Cauchy inequalities, after a few computations, we
have

d

dt

(

‖u(t)‖2 + ε‖∇u(t)‖2
)

+ δ
(

‖u(t)‖2 + ε‖∇u(t)‖2
)

+ ζ
(

‖u(t)‖p
Lp(RN )

+ ‖∇u(t)‖2
)

≤ 2‖β1‖L1(RN ) +
1

λ
‖σ(t)‖2,
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where ζ = min{2α1, 1}. Hence, by the Gronwall inequality, we deduce that
(3.18)

‖u(t)‖2 + ε‖∇u(t)‖2

≤ e−δ(t−τ)
(

‖uτ‖
2 + ε‖∇uτ‖

2
)

+ 2‖β1‖L1(RN ) +
1

λ

∫ t

τ

e−δ(t−s)‖σ(s)‖2ds.

On the other hand, we have

(3.19)

∫ t

τ

e−δ(t−s)‖σ(s)‖2ds

≤

(
∫ t

t−1

e−δ(t−s)‖σ(s)‖2ds+

∫ t−1

t−2

e−δ(t−s)‖σ(s)‖2ds+ · · ·

)

≤
(

1 + e−δ + e−2δ + · · ·
)

‖σ‖2b ≤
1

1− e−δ
‖g‖2b,

where we have used the fact that ‖σ‖2b ≤ ‖g‖2b for all σ ∈ Hw(g). Combining
(3.18) and (3.19), we get (3.1). �

Theorem 3.1 allows us to define a family of continuous processes

{Uσ(t, τ)}σ∈Hw(g)

as follows

Uσ(t, τ) : H
1(RN ) ∩ Lp(RN ) → H1(RN ) ∩ Lp(RN ),

where Uσ(t, τ)uτ is the unique weak solution of (1.1) (with σ in place of g) at
the time t with the initial datum uτ at τ .

We now prove the weak continuity of the family of processes

{Uσ(t, τ)}σ∈Hw(g).

Lemma 3.2. The family of processes {Uσ(t, τ)}σ∈Hw(g) associated to problem

(1.1) is (H1(RN ) ∩ Lp(RN ) × Hw(g), H
1(RN ) ∩ Lp(RN ))-weakly continuous,

that is, for any u
(n)
τ ⇀ uτ in H1(RN ) ∩ Lp(RN ) and σn ⇀ σ0 in Hw(g), we

have

Uσn
(t, τ)u(n)τ ⇀ Uσ0

(t, τ)uτ in H1(RN ) ∩ Lp(RN ), t ≥ τ.

Proof. Denote un(t) = Uσn
(t, τ)u

(n)
τ , we easily see that all estimates for ap-

proximate solutions in Theorem 3.1 are still valid for un(t) here. Thus, there
is w(t) such that

(3.20) un ⇀ w weakly-star in L∞(τ, t;H1(RN )),

(3.21) un ⇀ w in Lp(τ, t;Lp(RN )),

and the sequence

{un(s)}, τ ≤ s ≤ t, is bounded in H1(RN ) ∩ Lp(RN ).
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Using the arguments as in Theorem 3.1, we can see that

(3.22) ∂tun ⇀ wt in L
2(τ, t;H1(RN )),

and

(3.23) f(x, un)⇀ f(x,w) in Lp′

(τ, t;Lp′

(RN )).

Hence, by combining (3.20)-(3.23), we obtain that w solves the problem

wt − ε∆wt −∆w + f(x,w) + λw = σ0, w|t=τ = uτ ,

and therefore w = Uσ0
(t, τ)uτ thanks to the uniqueness of weak solutions. This

completes the proof. �

4. Existence of uniform attractors

First, we prove the existence of an (H1(RN )∩Lp(RN ), H1(RN )∩Lp(RN ))-
uniform absorbing set for the family of processes {Uσ(t, τ)}σ∈Hw(g).

Proposition 4.1. The family of processes {Uσ(t, τ)}σ∈Hw(g) associated to

problem (1.1) has an (H1(RN )∩Lp(RN ), H1(RN )∩Lp(RN ))-uniform absorbing

set, which is independent of ε.

Proof. Multiplying (1.1) by u + ut in L2(RN ), and after some standard com-
putations, we get

(4.1)

1

2

d

dt

(

(λ+ 1)‖u‖2 + (ε+ 1)‖∇u‖2 + 2

∫

RN

F (x, u)dx

)

+ ‖∇u‖2 +
1

2
‖ut‖

2 + ε‖∇ut‖
2 +

∫

RN

f(x, u)udx+
λ

2
‖u‖2

≤
λ+ 1

2
‖σ(t)‖2.

Using (1.2) and (1.5), we get two positive constants µ and C such that

(4.2)

‖∇u‖2 +

∫

RN

f(x, u)udx+
λ

2
‖u‖2

≥
µ

2

(

(λ+ 1)‖u‖2 + (ε+ 1)‖∇u‖2 + 2

∫

RN

F (x, u)dx

)

− C.

Thus, combining (4.1) and (4.2) we have

d

dt
y(t) + µy(t) ≤ (λ+ 1)‖σ(t)‖2 + C,

where

y(t) = (λ+ 1)‖u‖2 + (ε+ 1)‖∇u‖2 + 2

∫

RN

F (x, u)dx.
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Hence, from (1.5) we obtain
(4.3)

y(t) ≤ e−µ(t−τ)y(τ) + (λ+ 1)e−µt

∫ t

τ

eµs‖σ(s)‖2ds+ C

≤ Ce−µ(t−τ)(‖uτ‖
2 + ‖∇uτ‖

2 + ‖uτ‖
p
Lp(RN )

+ 1) +
λ+ 1

1− e−µ
‖g‖2b + C.

On the other hand, using (1.5) once again we find that

(4.4) y(t) ≥ ‖u(t)‖2 + ‖∇u(t)‖2 + 2α3‖u(t)‖
p
Lp(RN ) − 2‖β3‖L1(RN ).

Now, by combining (4.3) and (4.4), we can choose T1 and ρ0 such that

(4.5) ‖u(t)‖2 + ‖∇u(t)‖2 + ‖u(t)‖pLp(RN ) ≤ ρ0

for all t ≥ T1, uτ ∈ B and σ ∈ Hw(g). This completes the proof. �

Remark 4.1. The (H1(RN )∩Lp(RN ), H1(RN )∩Lp(RN ))-uniform absorbing set
obtained in Proposition 4.1 is also (H1(RN )∩Lp(RN ), L2(RN ))- and (H1(RN )∩
Lp(RN ), Lp(RN ))-uniform absorbing sets. Thus, in order to prove the existence
of a uniform attractor for {Uσ(t, τ)}σ∈Hw(g), it remains to check the uniform
asymptotic compactness of {Uσ(t, τ)}σ∈Hw(g).

4.1. Existence of an
(

H1(RN) ∩ Lp(RN), L2(RN)
)

-uniform attractor

In this subsection, we assume that the external force g satisfies the following
hypothesis:

(H2’) g, ∂tg ∈ L2
b(R;L

2(RN )) and

(4.6) lim
k→+∞

sup
t∈R

∫ t+1

t

∫

|x|≥k

|g(s, x)|2dxds = 0.

Lemma 4.2. For any τ ∈ R and any bounded subset B ⊂ H1(RN ) ∩ Lp(RN ),
there exist ρ1 > 0 and T2 > τ such that

(4.7) ‖ut(s)‖
2 + 2ε‖∇ut(s)‖

2 ≤ ρ1, ∀uτ ∈ B, s ≥ T2, and σ ∈ Hw(g).

Proof. Multiplying (1.1) by ut and applying the Cauchy inequality, we get

(4.8) ‖ut‖
2 +2ε‖∇ut‖

2 +
d

dt

(

‖∇u‖2 + λ‖u‖2 + 2

∫

RN

F (x, u)dx

)

≤ ‖σ(t)‖2.

Integrating (4.8) from t to t+ 1, t ≥ T1, and using (4.5) and (1.5) we have

(4.9)

∫ t+1

t

(

‖ut(s)‖
2 + 2ε‖∇ut(s)‖

2
)

ds

≤ ‖∇u(t)‖2 + λ‖u(t)‖2 + 2

∫

RN

F (x, u(t))dx +

∫ t+1

t

‖σ(s)‖2ds

≤ ‖∇u(t)‖2 + λ‖u(t)‖2 + 2α4‖u(t)‖
p
Lp(RN ) + 2‖β4‖L1(RN ) + ‖σ‖2b

≤ C(α4, β4, ‖g‖
2
b).
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On the other hand, differentiating (1.1) with respect to t, denoting v = ut and
multiplying by v in L2(RN ) we get

1

2

d

dt
‖v‖2 +

ε

2

d

dt
‖∇v‖2 + ‖∇v‖2 +

∫

RN

f ′
u(x, u)v

2dx+ λ‖v‖2 =

∫

RN

∂tσ(t)vdx.

Using the facts that f ′
u(x, u) ≥ −ℓ and that

∫

RN ∂tσ(t)v ≤ 1
2λ‖∂tσ(t)‖

2+ λ
2 ‖v‖

2

we obtain
d

dt

(

‖v‖2 + ε‖∇v‖2
)

+ 2‖∇v‖2 + λ‖v‖2 ≤ 2ℓ‖v‖2 +
1

λ
‖∂tσ(t)‖

2,

thus

(4.10)
d

dt

(

‖v‖2 + ε‖∇v‖2
)

≤ 2ℓ
(

‖v‖2 + ε‖∇v‖2
)

+
1

λ
‖∂tσ(t)‖

2.

From (4.9) and (4.10), using the uniform Gronwall inequality, we get the desired
result. �

Lemma 4.3. Let B be a bounded subset in H1(RN ) ∩ Lp(RN ). Then for any

η > 0, there exist Tη > 0 and Kη > 0 such that
∫

|x|≥Kη

|Uσ(t, τ)uτ |
2dx < η, ∀t ≥ Tη, ∀uτ ∈ B, ∀σ ∈ Hw(g).

Proof. Let θ : R+ → R be a smooth function satisfying θ(s) = 0, 0 ≤ s ≤ 1,
0 ≤ θ(s) ≤ 1, 1 ≤ s ≤ 2, and θ(s) = 1, s ≥ 2. It is easy to see that θ′(s) ≤ C

for all s ∈ [0,+∞) and θ′(s) = 0 for s > 2.

Multiplying (1.1) by θ
(

|x|2
k2

)

u and integrating over Rn, we obtain

(4.11)
1

2

d

dt

(
∫

RN

θ

(

|x|2

k2

)

|u|2dx+ ε

∫

RN

θ

(

|x|2

k2

)

|∇u|2dx

)

+ λ

∫

RN

θ

(

|x|2

k2

)

|u|2dx+

∫

RN

θ

(

|x|2

k2

)

|∇u|2dx+

∫

RN

θ

(

|x|2

k2

)

f(x, u)udx

+

∫

RN

2x

k2
θ′
(

|x|2

k2

)

u∇udx+ ε

∫

RN

2x

k2
θ′
(

|x|2

k2

)

u∇utdx

=

∫

RN

σ(t)θ

(

|x|2

k2

)

udx.

By (1.2), we get

(4.12)

∫

RN

θ

(

|x|2

k2

)

f(x, u)u ≥ α1

∫

RN

θ

(

|x|2

k2

)

|u|p −

∫

RN

θ

(

|x|2

k2

)

β1(x)

≥ −

∫

|x|≥k

β1(x).

Because θ′(s) = 0 for all s > 2, we have

(4.13)

∣

∣

∣

∣

∫

RN

2x

k2
θ′
(

|x|2

k2

)

u∇u

∣

∣

∣

∣

≤ C

∫

|x|≤
√
2k

2|x|

k2
|u||∇u| ≤

C

k
(‖u‖2+‖∇u‖2),
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and similarly,

(4.14)

∣

∣

∣

∣

ε

∫

RN

2x

k2
θ′
(

|x|2

k2

)

u∇ut

∣

∣

∣

∣

≤
C

k
(‖u‖2 + ε2‖∇ut‖

2).

By the Cauchy inequality, we see that
(4.15)

∣

∣

∣

∣

∫

RN

σ(t)θ

(

|x|2

k2

)

u

∣

∣

∣

∣

≤
λ

2

∫

RN

θ

(

|x|2

k2

)

|u|2 +
1

2λ

∫

RN

θ

(

|x|2

k2

)

|σ(t)|2

≤
λ

2

∫

RN

θ

(

|x|2

k2

)

|u|2 +
1

2λ

∫

|x|≥k

|σ(t)|2.

Combining (4.11)-(4.15), we deduce that

(4.16)

d

dt

(
∫

RN

θ

(

|x|2

k2

)

|u|2 + ε

∫

RN

θ

(

|x|2

k2

)

|∇u|2
)

+ δ

(
∫

RN

θ

(

|x|2

k2

)

|u|2 + ε

∫

RN

θ

(

|x|2

k2

)

|∇u|2
)

≤
1

λ

∫

|x|≥k

|σ(t)|2 + 2

∫

|x|≥k

β1(x) +
C

k

(

‖u‖2 + ‖∇u‖2 + ε2‖∇ut‖
2
)

.

Multiplying (4.16) by eδt and integrating from T ∗ to t, where T ∗ = max{T1, T2},
we find that
(4.17)

∫

RN

θ

(

|x|2

k2

)

|u(t)|2 + ε

∫

RN

θ

(

|x|2

k2

)

|∇u(t)|2

≤ e−δ(t−T∗)(‖u(T ∗)‖2 + ε‖∇u(T ∗)‖2) +
e−δt

λ

∫ t

T∗

∫

|x|≥k

eδs|σ(s)|2

+ 2e−δt

∫ t

T∗

∫

|x|≥k

eδsβ1(x)+
Ce−δt

k

∫ t

T∗

(

eδs
(

‖u‖2 + ‖∇u‖2 + ε2‖∇ut‖
2
))

.

Since β1 ∈ L1(RN ), we have

(4.18) lim sup
t→+∞

lim sup
k→+∞

e−δt

∫ t

τ

∫

|x|≥k

eδsβ1(x) = 0.

Using the arguments in (3.19) and assumption (4.6) we get

(4.19) lim sup
t→+∞

lim sup
k→+∞

e−δt

∫ t

τ

∫

|x|≥k

eδs|σ(s)|2 = 0.

By (4.5) and (4.7), we have

(4.20) e−δ(t−T∗)(‖u(T ∗)‖2 + ε‖∇u(T ∗)‖2) ≤ e−δ(t−T∗)ρ0 → 0 as t→ +∞,
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and

(4.21)

Ce−δt

k

∫ t

T∗

(

eδs
(

‖u‖2 + ‖∇u‖2 + ε2‖∇ut‖
2
))

≤
Ce−δt

k

∫ t

T∗

(eδs(ρ0 + ρ1))

≤
C(ρ0, ρ1)

k
→ 0 as k → +∞.

From (4.17)-(4.21), we can take Tη and Kη > 0 large enough such that
∫

|x|≥Kη

(|u(t)|2 + ε|∇u(t)|2) < η for all t ≥ Tη, uτ ∈ B and σ ∈ Hw(g).

This completes the proof. �

Theorem 4.4. Assume that f satisfies (H1) and g satisfies (H2’). Then

the family of processes {Uσ(t, τ)}σ∈Hw(g) possesses an
(

H1(RN ) ∩ Lp(RN ) ,

L2(RN )
)

-uniform attractor A2. Moreover, we have

A2 =
⋃

σ∈Hw(g)

Kσ(s), ∀s ∈ R,

where Kσ(s) is the kernel section at time s of the process Uσ(t, τ).

Proof. By Proposition 4.1, {Uσ(t, τ)} has an (H1(RN ) ∩ Lp(RN ), L2(RN ))-
uniform absorbing set. It remains to show that {Uσ(t, τ)} is (H1(RN ) ∩
Lp(RN ), L2(RN ))-uniformly asymptotically compact. Fix τ ∈ R, let {xn} ⊂
H1(RN ) ∩ Lp(RN ) be a bounded sequence, {tn} be a sequence such that
limn→∞ tn = ∞ and {σn} ⊂ Hw(g), we have to show that {Uσn

(tn, τ)xn}
is precompact in L2(RN ). We will prove that, for any η > 0, there exists a
finite covering balls with radii η for {Uσn

(tn, τ)xn}. Since tn → +∞, we can
choose N large enough such that tn ≥ Tη for all n ≥ N , where Tη is stated in
Lemma 4.3. From Lemma 4.3, there exists Kη > 0 such that

(4.22) ‖Uσn
(tn, τ)xn‖

2
L2(Bc

Kη
) <

η

4
, ∀n ≥ N,

where Bc
Kη

= {x ∈ R
N : |x| > Kη}. On the other hand, from Proposition 4.1,

the sequence {Uσn
(tn, τ)xn} is bounded in H1(BKη

); taking into account that

H1(BKη
) →֒ L2(BKη

) compactly, we see that

(4.23)
{Uσn

(tn, τ)xn} has a finite covering by balls with radii less than
η

4
in L2(BKη

).

Combining (4.22) and (4.23) we obtain the existence of a finite covering by balls
with radii η for {Uσn

(tn, τ)xn}. Hence we get the existence of an (H1(RN ) ∩
Lp(RN ), L2(RN ))-uniform attractor A2. The structure of A2 follows directly
from Theorem 2.1. �
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4.2. Existence of an
(

H1(RN) ∩ Lp(RN), Lp(RN)
)

-uniform attractor

To prove the existence of
(

H1(RN ) ∩ Lp(RN ), Lp(RN )
)

and (H1(RN ) ∩

Lp(RN ), H1(RN ) ∩ Lp(RN ))-uniform attractors, we assume that the external
force g satisfies the following hypothesis:

(H2”) g ∈ L∞(R;L2(RN )), ∂tg ∈ L2
b(R;L

2(RN )) and

lim
k→+∞

sup
t∈R

∫ t+1

t

∫

|x|≥k

|g(s, x)|2dxds = 0.

It is obvious that if g ∈ L∞(R;L2(RN )), then g ∈ L2
b

(

R;L2(RN )
)

. Thus, all
estimates in previous sections are still valid here. It is noticed that

(4.24) σ ∈ L∞ (

R;L2(RN )
)

for all σ ∈ Hw(g).

From now on, for the shake of brevity, we will use the notations

Ω(Φ) = {x ∈ R
N : Φ is true}, where Φ is a logical condition,

and

‖σ‖∞ = ‖σ‖L∞(R;L2(RN )) for all σ ∈ Hw(g).

Lemma 4.5. For any τ ∈ R, any bounded subset B ⊂ H1(RN ) ∩Lp(RN ) and
any η > 0, there exist T and M0 such that

(4.25)
mes(Ω(|Uσ(t, τ)uτ | ≥M)) ≤ η for all t>T, M >M0, uτ ∈ B and σ ∈ Hw(g),

where mes(G) is the Lebesgue measure of a subset G of RN .

Proof. From (4.5) we see that for any t ≥ T1, any uτ ∈ B and any σ ∈ Hw(g),
we have

ρ0 ≥

∫

RN

|Uσ(t, τ)uτ |
2

≥

∫

Ω(|Uσ(t,τ)uτ |≥M)

|Uσ(t, τ)uτ |
2

≥M2mes(Ω(|Uσ(t, τ)uτ | ≥M)).

Thus, we arrive at (4.25) by choosing T = T1 and M0 =
(

ρ0

η

)1/2

. �

Lemma 4.6. For any τ ∈ R, any bounded subset B ⊂ H1(RN ) ∩Lp(RN ) and
any η > 0, there exist T > τ and M0 > 0 such that
∫

Ω(|u|≥M)

((|u|−M)2+ε|∇u|2)≤η for all t>T, uτ ∈B, M≥M0 and σ ∈ Hw(g).

Proof. Denote

(u−M)+ =

{

u−M if u ≥M

0 if u ≤M,
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and ΩM = Ω(u ≥ M). Multiplying (1.1) by (u −M)+ and integrating over
R

N , we get

(4.26)

1

2

d

dt

∫

ΩM

(|u −M |2 + ε|∇u|2) +

∫

ΩM

|∇u|2 +

∫

ΩM

f(x, u)(u−M)

+ λ

∫

ΩM

u(u−M)

=

∫

ΩM

σ(t)(u −M).

Using assumptions (1.2)-(1.3), the fact that u ≥ M in ΩM , and Young’s in-
equality, we have

(4.27)

∫

ΩM

f(x, u)(u −M)

=

∫

ΩM

f(x, u)udx−

∫

ΩM

f(x, u)M

≥

∫

ΩM

[α1u
p − β1(x)] −M

∫

ΩM

[

α2u
p−1 + β2(x)

]

≥

∫

ΩM

[α1u
p − β1(x)] −M

∫

ΩM

α2u
p−1 −

∫

ΩM

β2(x)u

≥
α1

2

∫

ΩM

up −

∫

ΩM

β1(x)− C1

∫

ΩM

β2(x)
p′

− C2mes(ΩM ).

By the Cauchy inequality and hypothesis (4.24), we get

(4.28)

∫

ΩM

σ(t)(u −M) ≤
‖σ‖2∞
2λ

mes (ΩM )) +
λ

2

∫

ΩM

|u−M |2.

Combining (4.26)-(4.28) and the fact that
∫

ΩM
u(u −M) ≥

∫

ΩM
|u −M |2, in

particular, we obtain

d

dt

∫

ΩM

(|u −M |2 + ε|∇u|2) + δ

∫

ΩM

(|u−M |2 + ε|∇u|2)

≤ C
(

mes (ΩM ) +

∫

ΩM

β1(x) +

∫

ΩM

β2(x)
p′

)

.

Thus, by the Gronwall inequality we find that
∫

ΩM

(|u(t)−M |2 + ε|∇u(t)|2)

≤ e−δ(t−τ)(‖uτ −M‖2 + ε‖∇uτ‖
2) + C

(

mes (ΩM ) +

∫

ΩM

β1(x)

+

∫

ΩM

β2(x)
p′

)

.
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Using Lemma 4.5 and the facts that β1 ∈ L1(RN ), β2 ∈ Lp′

(RN ), and uτ
belongs to the bounded set B, we obtain

(4.29)

∫

ΩM

(|u−M |2 + ε|∇u|2) ≤ η when t and M large enough.

Repeating the above arguments and replacing (u−M)+ by (u+M)−, where

(u+M)− =

{

u+M if u ≤ −M

0 if u ≥ −M,

we get

(4.30)

∫

Ω(u≤−M)

((u +M)2 + ε|∇u|2) ≤ η

for t andM large enough. Combining (4.29) and (4.30) completes the proof. �

Lemma 4.7 ([9]). Let p ≥ 2 and {Uσ(t, τ)}σ∈Hw(g) be a family of processes

satisfying the following assumptions:
(i) {Uσ(t,τ)}σ∈Hw(g) has an (H1(RN )∩Lp(RN ), L2(RN ))-uniform attractor;

(ii) {Uσ(t, τ)}σ∈Hw(g) has an (H1(RN )∩Lp(RN ), Lp(RN ))-uniform absorb-

ing set;
(iii) for any η > 0 and any bounded set B ⊂ H1(RN ) ∩ Lp(RN ), there exist

M and T such that
∫

Ω(|Uσ(t,τ)uτ |≥M)

|Uσ(t, τ)uτ |
p ≤ Cη for all uτ ∈ B, t ≥ T and σ ∈ Hw(g),

where C is independent of η, uτ , t and σ. Then {Uσ(t, τ)}σ∈Hw(g) has an

(H1(RN ) ∩ Lp(RN ), Lp(RN ))-uniform attractor.

Theorem 4.8. Assume that f satisfies (H1) and g satisfies (H2”). Then the

family of processes {Uσ(t, τ)}σ∈Hw(g) associated to problem (1.1) possesses an

(H1(RN ) ∩ Lp(RN ), Lp(RN ))-uniform attractor Ap, and

Ap =
⋃

σ∈Hw(g)

Kσ(s) for all s ∈ R.

Proof. By Proposition 4.1, Theorem 4.4 and Lemma 4.7, we only need to show
that for any η > 0 and any bounded subset B ⊂ H1(RN )∩Lp(RN ), there exist
M > 0 and T ≥ τ such that

(4.31)

∫

Ω(|u(t)|≥M)

|u(t)|p ≤ Cη

for all t ≥ T , uτ ∈ B and σ ∈ Hw(g). Indeed, for any σ ∈ Hw(g), by taking
(u−M)+ as a test function in (1.1), we have

∫

ΩM

ut(u−M) + ε

∫

ΩM

∇ut∇u+

∫

ΩM

|∇u|2 +

∫

ΩM

f(x, u)(u −M)



1316 C. T. ANH AND N. D. TOAN

=

∫

ΩM

σ(t)(u −M).

Using estimate (4.27) we get

α1

2

∫

Ω(u≥M)

|u(t)|p

≤

∫

ΩM

|ut||u−M |+ ε

∫

ΩM

|∇ut||∇u|+

∫

ΩM

|σ(t)||u −M |

+

∫

ΩM

β1(x) + C1

∫

ΩM

β2(x)
p′

+ C2mes(ΩM )

≤ ‖ut(t)‖

(
∫

ΩM

|u−M |2
)1/2

+ ε‖∇ut(t)‖

(
∫

ΩM

|∇u|2
)1/2

+ ‖σ‖∞

(
∫

ΩM

|u−M |2
)1/2

+

∫

ΩM

β1(x) + C1

∫

ΩM

β2(x)
p′

+ C2mes(ΩM ).

Using Lemma 4.2 we deduce that

∫

Ω(u≥M)

|u(t)|p ≤ C
(

(
∫

ΩM

|u−M |2
)1/2

+

(
∫

ΩM

|∇u|2
)1/2

+

∫

ΩM

β1(x) +

∫

ΩM

β2(x)
p′

+mes(ΩM )
)

when t is large enough. Since β1 ∈ L1(RN ) and β2 ∈ Lp′

(RN ), we have
∫

ΩM

β1(x) +

∫

ΩM

β2(x)
p′

< η

if M is large enough. Taking into account Lemmas 4.5 and 4.6, there exist T0
and M0 such that

∫

Ω(u(t)≥M)

|u(t)|p ≤ Cη

for all t ≥ T0, uτ ∈ B, σ ∈ Hw(g) and M ≥M0. Similarly, replacing (u−M)+
by (u+M)−, we can deduce that

∫

Ω(u(t)≤−M)

|u(t)|p ≤ Cη.

Hence we obtain (4.31) and this completes the proof. �

4.3. Existence of an (H1(RN)∩Lp(RN), H1(RN)∩Lp(RN))-uniform
attractor

We first prove the following lemma, which is very useful in verifying the
uniform asymptotic compactness of the family of processes {Uσ(t, τ)}σ∈Hw(g).
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Lemma 4.9. If a family of processes {Uσ(t, τ)}σ∈Σ satisfies the uniform (X,

Y )-condition (C), that is, for any fixed τ ∈ R, B ∈ B(X), and any η > 0, there
exist T ≥ τ and a finite dimensional subspace Y1 of Y such that:

(i) P
(

⋃

σ∈Σ

⋃

t≥T Uσ(t, τ)B
)

is bounded in Y1,

(ii) ‖(IdY − P )y‖Y ≤ η, ∀y ∈
⋃

σ∈Σ

⋃

t≥T Uσ(t, τ)B,

where P : Y → Y1 is a bounded projector, IdY is the identity, then {Uσ(t, τ)}σ∈Σ

is (X,Y )-uniformly (w.r.t σ ∈ Σ) asymptotically compact.

Proof. Let {tn} ⊂ [τ,+∞), tn → +∞, {σn} ⊂ Σ and {xn} ⊂ B. We have to
prove that {Uσn

(tn, τ)xn} is precompact in Y . Take N such that tn ≥ T for
all n ≥ N . Let η > 0 be arbitrary. By (i), we see that P ({Uσn

(tn, τ)xn}n≥N)
is bounded in Y1. Since Y1 is finite dimensional, without loss of generality, we
can assume that {PUσn

(tn, τ)xn}n≥N is a Cauchy sequence in Y . Thus, there
exists N1 > N such that

‖PUσn
(tn, τ)xn − PUσm

(tm, τ)xm‖Y ≤
η

3
for all m,n ≥ N1.

On the other hand, by (ii), we conclude that there exists N2 > N such that

‖(IdY − P )Uσn
(tn, τ)xn‖Y ≤

η

3
for all n ≥ N2.

Now, taking N∗ = max{N1, N2}, we have

‖Uσn
(tn, τ)xn − Uσm

(tm, τ)xm‖Y

≤ ‖PUσn
(tn, τ)xn − PUσm

(tm, τ)xm‖Y + ‖(IdY − P )Uσn
(tn, τ)xn‖Y

+ ‖(IdY − P )Uσm
(tm, τ)xm‖Y

≤ η for all n,m ≥ N∗.

This means that {Uσn
(tn, τ)xn} is a Cauchy sequence in Y . The proof is

complete. �

Lemma 4.10. Assume that 2 ≤ q <∞ and {Uσ(t, τ)}σ∈Σ has an (H1(RN ) ∩
Lp(RN ), Lq(RN ))-uniform attractor. Then, for any η > 0, any τ ∈ R and any

bounded subset B ⊂ H1(RN ) ∩ Lp(RN ), there exist T ≥ τ and m0 ∈ N such

that
∫

RN

|(I − Pm)Uσ(t, τ)uτ |
q ≤ Cη for any t ≥ T, uτ ∈ B, m ≥ m0, σ ∈ Σ,

where Pm is the canonical projection of Lq(RN ) onto an m-dimensional sub-

space.

Proof. Let A be the (H1(RN ) ∩ Lp(RN ), Lq(RN ))-uniform attractor of

{Uσ(t, τ)}σ∈Σ.
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Then for any η > 0, any τ ∈ R and any bounded subset B ⊂ H1(RN )∩Lp(RN ),
there exists T0 such that

⋃

t≥T0

⋃

σ∈Σ

Uσ(t, τ)B ⊂ NLq (A, η),

where NLq (A, η) is the η-neighborhood of A in Lq(RN ). Since A is compact in
Lq(RN ), there exist n ∈ N and vi ∈ Lq(RN ), i = 1, . . . , n, such that

⋃

t≥T0

⋃

σ∈Σ

Uσ(t, τ)B ⊂
n
⋃

i=1

NLq (vi, η).

For each vi there is an mi such that
∫

RN

|(I − Pm)vi|
q ≤ η for all m ≥ mi.

Taking m0 = max{m1, . . . ,mn}. Denote Qm0
= I − Pm0

for any t ≥ T0, any
uτ ∈ B, and any σ ∈ Hw(g) there exists some vi such that
∫

RN

|Qm0
Uσ(t, τ)uτ |

q =

∫

RN

|Qm0
Uσ(t, τ)uτ −Qm0

vi +Qm0
vi|

q

≤ 2q
∫

RN

|Qm0
Uσ(t, τ)uτ −Qm0

vi|
q + 2q

∫

RN

|Qm0
vi|

q

≤ 2qCq

∫

RN

|Uσ(t, τ)uτ − vi|
q + 2q

∫

RN

|Qm0
vi|

q

≤ 2q(Cq + 1)η,

where Cq depends only on q. This completes the proof. �

We are now ready to prove the main result of this section.

Theorem 4.11. Assume that conditions (H1) and (H2”) hold. Then the

family of processes {Uσ(t, τ)}σ∈Hw(g) generated by problem (1.1) possesses an

(H1(RN ) ∩ Lp(RN ), H1(RN ) ∩ Lp(RN ))-uniform attractor AHw(g). Moreover,

AHw(g) =
⋃

σ∈Hw(g)

Kσ(s), ∀s ∈ R.

Proof. SinceH1(RN ) is separable, we can choose a set {w1, w2, . . .} which forms
an orthogonal basis in both L2(RN ) and H1(RN ). Let Hm = span{w1, w2, . . .,
wm}, Pm be the canonical projector on Hm and I be the identity. Then for any
u ∈ H1(RN ), u has a unique decomposition: u = u1 + u2, where u1 = Pmu ∈
Hm and u2 = (I − Pm)u. Let η > 0 be arbitrary. Taking u2 as a test function
in (1.1), we obtain

1

2

d

dt

(

‖u2‖
2 + ε‖∇u2‖

2
)

+ ‖∇u2‖
2 +

∫

RN

f(x, u)u2 + λ‖u2‖
2 =

∫

RN

σ(t)u2,
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thus,

(4.32)

d

dt

(

‖u2‖
2 + ε‖∇u2‖

2
)

+ 2‖∇u2‖
2 + 2λ‖u2‖

2

≤ 2‖f(x, u)‖Lp′(RN )‖u2‖Lp(RN ) + 2‖σ(t)‖‖u2‖.

Using (1.3), we get |f(x, u)|p
′

≤ C(|u|p + β2(x)
p′

), hence ‖f(x, u)‖Lp′(RN ) is

bounded when t large enough due to Proposition 4.1. Since {Uσ(t, τ)}σ∈Σ

has (H1(RN ) ∩ Lp(RN ), L2(RN )) and (H1(RN ) ∩ Lp(RN ), Lp(RN ))-uniform
attractors, by Lemma 4.10 we get m∗ such that

(4.33) ‖u2‖ < η and ‖u2‖Lp(RN ) < η for all m ≥ m∗.

From (4.32) and (4.33) we get

d

dt

(

‖u2‖
2 + ε‖∇u2‖

2
)

+ δ
(

‖u2‖
2 + ε‖∇u2‖

2
)

≤ Cη + ‖σ‖∞η,

thus

‖u2‖
2 + ε‖∇u2‖

2 ≤ e−δ(t−T )
(

‖u(T )‖2 + ε‖∇u(T )‖2
)

+ Cη.

Thus, we can find t∗ ≥ τ , m0 ∈ N, such that

‖u2‖
2 + ε‖∇u2‖

2 ≤ Cη

for any t ≥ t∗, uτ ∈ B and m ≥ m0. This shows that the process {Uσ(t, τ)}σ∈Σ

satisfies condition (ii) in Lemma 4.9. The condition (i) is obviously satisfied
since

⋃

σ∈Σ

⋃

t≥t∗ Uσ(t, τ)B is bounded and Pm is a bounded projector for

any m. Then, by Lemma 4.9, we see that {Uσ(t, τ)}σ∈Hw(g) is (H1(RN ) ∩

Lp(RN ), H1(RN ))-uniformly asymptotically compact. Combining this with
the existence of the (H1(RN )∩Lp(RN ), Lp(RN ))-uniform attractor, we obtain
the existence of an (H1(RN ) ∩ Lp(RN ), H1(RN ) ∩ Lp(RN ))-uniform attractor
AHw(g). The structure of AHw(g) follows directly from Theorem 2.1. �

5. The upper semicontinuity of uniforms attractors at ε = 0

Hereafter, we denote by {Uε
σ(t, τ)} the process associated to equation (1.1)

with −ε∆ut term and the external force σ.

Lemma 5.1. Assume that {φn} is a bounded sequence in H1(RN ) ∩ Lp(RN ),
{σn} ⊂ Hw(g), and {εn} ⊂ [0, 1] satisfying

(5.1) φn ⇀ φ in H1(RN ) ∩ Lp(RN ),

(5.2) σn ⇀ σ in Hw(g),

and

εn → 0

as n → +∞. Then for all t ≥ τ , there exists a subsequence {j} of {n} such

that

(5.3) Uεj
σj
(t, τ)φj → U0

σ(t, τ)φ in L2(RN ).
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Proof. Denoting un(t) = Uσn
(t, τ)φn, we get

(5.4) ∂tun − εn∆∂tun −∆un + f(x, un) + λun = σn(t).

Multiplying (5.4) by un + ∂tun, integrating over RN , and applying the Hölder
and Cauchy inequalities, we obtain

(5.5)

d

dt

(

(λ+ 1)‖un‖
2 + (εn + 1)‖∇un‖

2 + 2

∫

RN

F (x, un)

)

+ 2‖∇un‖
2 + 2λ‖un‖

2 + ‖∂tun‖
2 + 2ε‖∇∂tun‖

2 + 2

∫

RN

f(x, un)un

≤

(

1 +
1

λ

)

‖σn(t)‖
2.

Integrating (5.5) from τ to t, using (1.2), (1.5) and noting that un(τ) = φn, we
have

(5.6)

(λ + 1)‖un(t)‖
2 + ‖∇un(t)‖

2 + α3‖un(t)‖
p
Lp(RN )

+ 2

∫ t

τ

‖∇un‖
2 + λ

∫ t

τ

‖un‖
2 + 2εn

∫ t

τ

‖∇∂tun‖
2

≤ (λ + 1)‖φn‖
2 + 2‖∇φn‖

2 + 2α4‖φn‖
p
Lp(RN ) + 2‖β4‖L1(RN )

+ 2(t− τ)‖β1‖L1(RN ) +

(

1 +
1

λ

)
∫ t

τ

‖σn(s)‖
2.

By (5.1) and (5.2) we deduce that the right-hand side of (5.6) is bounded by a
constant C independent of n. Thus, from (5.6) we see that

{un(t)} is bounded in H1(RN ) ∩ Lp(RN ).

Thus, there exists a function v0 ∈ L2(RN ) such that un(t) ⇀ v0 weakly in
L2(RN ) (up to a subsequence). For each m > 0, we denote by Bm the ball
centered at origin with radius m. Take any ψ ∈ L2(Bm), we set ψ̄(x) = ψ(x)
for all x ∈ Bm and ψ̄(x) = 0 for all x > m. It is obvious that ψ̄ ∈ L2(RN ) and

(un(t), ψ)L2(Bm) = (un(t), ψ̄)L2(RN ) → (v0, ψ̄)L2(RN ) = (v0, ψ)L2(Bm).

It implies that un(t) ⇀ v0 in L2(Bm) for all m > 0. On the other hand,
for m > 0, {un(t)} is bounded in H1(Bm), then since H1(Bm) →֒ L2(Bm)
compactly, we find that {un(t)} is precompact in L2(Bm). By a diagonal
procedure, we can choose a subsequence {j} of {n} such that uj(t) → vm
strongly in L2(Bm), where vm ∈ L2(Bm). By the uniqueness of the weak limit
we conclude that

(5.7) uj(t) → v0 strongly in L2(Bm) for all m > 0.

We will prove that uj(t) → v0 in L2(RN ). Indeed, we have

(5.8)

∫

RN

|uj(t)− v0|
2 ≤

∫

Bm

|uj(t)− v0|
2 + 2

∫

Bc
m

|uj(t)|
2 + 2

∫

Bc
m

|v0|
2,
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where Bc
m = {x ∈ R

N : |x| > m}. We now control terms of the right-hand side
of (5.8). First, by (5.7) we get

∫

Bm

|uj(t)− v0|
2 → 0 as n→ +∞.

Next, using arguments in Lemma 4.3, we easily deduce that
(5.9)
∫

Bc
m

|uj(t)|
2 ≤ e−δ(t−τ)

∫

Bc
m

(|φj |
2 + |∇φj |

2) + C

∫ t

τ

∫

Bc
m

|σj(s)|
2

+ C

∫

Bc
m

|β1(x)|+
C

m

∫ t

τ

(

‖uj(s)‖
2+‖∇uj(s)‖

2+ε2j‖∇∂tuj‖
2
)

.

Applying (5.1), (5.2) and (5.6) in (5.9) gives us

(5.10)

∫

Bc
m

|uj(t)|
2 → 0 as n,m→ +∞.

Because v0 ∈ L2(RN ),

(5.11)

∫

Bc
m

|v0|
2 → 0 as m→ +∞.

Combining (5.8)-(5.11), we claim that

(5.12) uj(t) → v0 in L2(RN ) as n→ +∞.

On the other hand, doing similarly to Lemma 3.2, we have

(5.13) Uεj
σj
(t, τ)φj ⇀ U0

σ(t, τ)φ in H1(RN ) ∩ Lp(RN ).

From (5.12) and (5.13) we get (5.3). �

Theorem 5.2. Assume that f satisfies (H1) and g satisfies (H2”). Then the

family of uniform attractors {Aε}ε∈[0,1] is upper semicontinuous in L2(RN ) at
ε = 0, that is,

lim
ε→0

distL2(RN ) (Aε,A0) = 0.

Proof. Assume that distL2(RN )(Aε,A0) 6→ 0 as ε→ 0. Then there exists δ > 0
such that

lim sup
ε→0

distL2(RN )(Aε,A0) ≥ δ.

Since Aε is compact for any ε ∈ [0, 1], we can choose a sequence εn, εn → 0 as
n→ +∞ and ψn ∈ Aεn satisfying

(5.14) distL2(RN ) (ψn,A0) ≥ δ for all n ≥ 1.

By Proposition 4.1 and Theorem 2.1 we see that the set A =
⋃

ε∈(0;1]Aε is

bounded, and then by the uniform attracting property of A0, we can choose t
large enough such that

(5.15) distL2(RN )

(

U0
σ(t, 0)A,A0

)

≤
δ

2
for all σ ∈ Hw(g).
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From Theorem 4.4, we know that

Aεn =
⋃

σ∈Hw(g)

Kεn
σ (t),

thus, since ψn ∈ Aεn , there exists a σn ∈ Hw(g) such that ψn ∈ Kεn
σn

(t). By
definition of Kεn

σn
, we get a φn ∈ Kεn

σn
(0) satisfying ψn = Uεn

σn
(t, 0)φn. Since

{φn} ⊂
⋃

n≥1 K
εn
σn
(0) is bounded in H1(RN ) ∩ Lp(RN ), Hw(g) is weakly com-

pact and limn→+∞ εn = 0 we obtain a subsequence {m} ⊂ {n} such that

φm ⇀ φ in H1(RN ) ∩ Lp(RN ),

σm ⇀ σ0 in L2(τ, t;L2(RN )), and

εm → 0

as m→ +∞. Now applying Lemma 5.1, we deduce that

ψm → U0
σ0
(t, 0)φ ∈ U0

σ0
(t, 0)A,

which contradicts (5.14) and (5.15). This completes the proof. �

6. Relationships between pullback attractors, uniform attractors
and global attractors

In this section we discuss relationships between the above uniform attractor,
the pullback attractor obtained in [3], and the global attractor obtained when
the external force f does not depend on the time variable t.

6.1. A relationship between uniform attractors and global attractors

Let us now briefly consider the matter of the existence of a global attractor
when the function f ∈ L2(RN ) does not depend on the time variable t, i.e., in
the autonomous case.

In this case we can define a continuous semigroup S(t) : H1(RN )∩Lp(RN ) →
H1(RN ) ∩ Lp(RN ) by

S(t)u0 = u(t),

where u(t) is the unique weak solution to problem (1.1) corresponding to the
initial datum u0. It is easy to see that

S(t)u0 = U(t, 0)u0 = U(t+ τ, τ)u0 for any τ ∈ R.

We recall that a compact set A is said to be a global attractor for S(t) if it
is invariant (i.e., S(t)A = A, ∀t ≥ 0) and attracts every bounded subset B of
H1(RN ) ∩ Lp(RN ), i.e.,

dist(S(t)B,A) → 0 as t→ +∞.

From estimate (4.5), we see that the set

B0 =
{

u ∈ H1(RN ) ∩ Lp(RN ) : ‖u‖2 + ‖∇u‖2 + ‖u‖pp ≤ ρ0

}

is a bounded absorbing set for S(t), i.e., for any bounded subset B there is
T (B) such that S(t)B ⊂ B0 as soon as t ≥ T (B).
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On the other hand, for any tn → +∞ and un ∈ B, the sequence

S(tn)un = U(tn, 0)un

is relatively compact in H1(RN )∩Lp(RN ) due to Lemmas 4.9 and 4.10. Hence,
S(t) is asymptotically compact.

Then, it follows from standard theorems (see, e.g., [5]) that the semigroup
S(t) posesses a connected compact global attractor A in H1(RN ) ∩ Lp(RN ).

Thus, in the autonomous case, our results are even new and extend some
results for the nonclassical diffusion equation in bounded domains [10] to the
case of unbounded domains.

6.2. A relationship between pullback attractors and uniform attrac-
tors

Let now the external force g satisfy condition (H2”). By Theorem 3.12 in
[3], it deduces that for any σ ∈ Hw(g), the process {Uσ(t, τ)} has a pullback

attractor Âσ = {Aσ(t) : t ∈ R} in H1(RN ) ∩ Lp(RN ). We now prove the
following

Theorem 6.1. Assume conditions (H1) and (H2”) hold. Then for any σ ∈

Hw(g), the process Uσ(t, τ) has a pullback attractor Âσ = {Aσ(t) : t ∈ R} in

H1(RN ) ∩ Lp(RN ), and

Aσ(s) = Kσ(s),
⋃

σ∈Hw(g)

Aσ(s) = AHw(g), ∀s ∈ R,

where AHw(g) is the uniform attractor of problem (1.1), Kσ is the kernel of the

process Uσ(t, τ).

Proof. Since Âσ is pullback attracting and since Aσ(s) is compact, we have

Kσ(s) ⊂ Aσ(s) for any s ∈ R.

On the other hand, by the definition of Kσ(s) and the invariance of Âσ, we
have

Aσ(s) ⊂ Kσ(s) for any s ∈ R.

So, we have

(6.1) Aσ(s) = Kσ(s) for any s ∈ R.

Next, by (6.1) and Theorem 4.11,

AHw(g) =
⋃

σ∈Hw(g)

Kσ(s) =
⋃

σ∈Hw(g)

Aσ(s), ∀s ∈ R.

The proof is complete. �
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