• Title/Summary/Keyword: asymmetric load

Search Result 176, Processing Time 0.026 seconds

Elasticity solution of multi-layered shallow cylindrical panels subjected to dynamic loading

  • Shakeri, M.;Eslami, M.R.;Alibiglu, A.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.195-208
    • /
    • 2002
  • Elasticity solutions to the boundary-value problems of dynamic response under transverse asymmetric load of cross-ply shallow cylindrical panels are presented. The shell panel is simply supported along all four sides and has finite length. The highly coupled partial differential equations are reduced to ordinary differential equations with constant coefficients by means of trigonometric function expansion in the circumferential and axial directions. The resulting ordinary differential equations are solved by Galerkin finite element method. Numerical examples are presented for two (0/90 deg.) and three (0/90/0 deg.) laminations under dynamic loading.

The medium access control protocol of virtual token bus network for real time communication (실시간 통신을 위한 가상토큰버스 통신망의 매체접근제어 프로토콜)

  • 정연괘
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.76-91
    • /
    • 1996
  • In this paper, we proposed the new medium access control protocol for the virtual token bus netowrk. The network is applied to inter-processor communication network of large capacity digital switching system and digital mobile system with distributed control architecture. in the virtual token bus netowrk, the existing medium access control protocols hav ea switchove rtime overhead when traffic load is light or asymmetric according ot arbitration address of node that has message to send. The proposed protocol optimized average message delay using cyclic bus access chain to exclude switchover time of node that do not have message to send. Therefore it enhanced bus tuilization and average message delay that degrades the performance of real time communication netowrks. It showed that the proposed protocol is more enhacned than virtual token medium access control protocol and virtual token medium access control protocol iwth reservation through performance analysis.

  • PDF

Behaviors of CAD and CUS Thick-walled Composite I-Beam Under Torsional Load (비틀림 하중을 받는 두꺼운 복합재료 빔의 거동)

  • Park, Mi-Jung;Chun, Heoung-Jae;Byun, Jun-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.202-206
    • /
    • 2005
  • Most of studies on the open section composite beams are confined to the thin composite beams. There are some works focused on the thick composite beams but they are limited only to closed section beams. Therefore, it is required to develop an appropriate model to analyze the thick open section composite beams. In this study, the cantilever beams of two specific lay-up configurations are considered which are the circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness (CUS) beams. Under the torsional loading, loading induced deformations are obtained for the thick beams using the suggested model. The model includes coupled stiffness and secondary warping effects. The results are compared with those obtained using thin beam model to observe the thickness effects. Those results are also compared with the finite element analysis results.

  • PDF

Position servo control of a PR type pneumatic manipulator (PR형 공압 머니퓰레이터의 위치서보제어)

  • Lim, Seung-Cheol;Eao, Yun-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1619-1625
    • /
    • 1997
  • This paper concerns a 2-axis PR type pneumatic manipulator system translating in vertical and rotating in horizontal directions. A simplified linear model is mathematically formulated similar to the pneumatic acturators in dynamic responses in order to devise an appropriate position control scheme. A PD controller preceding the on/off solenoid valve turns out not only economical but also effective in reducing rise time and amplitude of limit cycles, if its control gains are determined on the basis of frequency response. And, additional implementation of symmetric or asymmetric deadband at the PD controller output greatly helps minimize valve opening numbers, positional error, and undesirable direction-dependent property due to the gravitational load. Such a control concept is synthesized through numerical simulations and next applied to the experimental set-up, featuring enhanced positional servo characteristics.

An Elastohydrodynamic Lubrication of Elliptical Contacts : Part II - The Effect of Spin Motion (타원접촉의 탄성유체윤활 : 제2보 - 스핀운동의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.49-55
    • /
    • 2007
  • A numerical analysis of elastohydrodynamic lubrication of elliptical contacts with both rolling and spinning has been carried out. A finite difference method with non-uniform grid systems and the Newton-Raphson method are applied to solve the problems. The velocity vectors resulting from combined spinning and rolling/sliding motion lead to asymmetric pressure distributions and film shapes. Pressure distributions, film contours and variations of the minimum and central film thicknesses are compared with various spin-roll ratios. Reduction of the minimum film thickness under spinning is remarkable whereas the central film thickness is relatively less. The spin motion have large effect on variations of the minimum film thickness with load parameter which are small in pure rolling/sliding cases. Therefore present numerical scheme can be used in the analysis of general elliptical contact EHL problems and further studies are required.

Study on rectangular concrete-filled steel tubes with unequal wall thickness

  • Zhang, Yang;Yu, Chen-Jiang;Fu, Guang-Yuan;Chen, Bing;Zhao, She-Xu;Li, Si-Ping
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1073-1084
    • /
    • 2016
  • Rectangular concrete-filled steel tubular columns with unequal wall thickness were investigated in the paper. The physical centroid, the centroidal principal axes of inertia, and the section core were given. The generalized bending formula and the generalized eccentric compression formula were deduced, and the equation of the neutral axis was also provided. The two rectangular concrete-filled steel tubular stub specimens subjected to the compression load on the physical centroid and the geometric centroid respectively were tested to verify the theoretical formulas.

A Study on the Design of the Carrier Phase Difference for the Planetary Gear Noise Reduction (유성기어 소음저감을 위한 캐리어 위상차 설계에 관한 연구)

  • Park, Ki-Ho;Kim, Tai-Hoon;Jung, Sang-Jin;Wee, Hyuk;Lee, Gook-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.230-231
    • /
    • 2011
  • There is a merit a planetary gear set disperses a delivery load, and to decrease loss of friction and noise. But, in addition to meshing this internal and external gear simultaneously and phase difference by the tooth contact point and the time difference occurs asymmetric and symmetric sideband noise and vibration caused by the modulation in the vehicle. Existing planetary gear set research have progressed to reduce the cause of the sideband as run-out, pitch error and imbalance. In this paper presents a method for the design of the carrier phase difference by developing various theorys and experiments for gear noise.

  • PDF

Design of Composite Multilayer Surface Antenna Structure and Its Bending Fatigue Characteristics

  • Moon, Tae-Chul;Hwang, Woon-Bong
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.215-224
    • /
    • 2008
  • The present study aims to design a multilayer microstrip antenna with composite sandwich construction and investigate fatigue behavior of this multilayer SAS (surface antenna structure) that was asymmetric sandwich structure for the next generation of structural surface technology. This term, SAS, indicates that the structural surface becomes an antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, antenna elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.2 GHz. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of the SAS was obtained. The experimental results of bending fatigue were compared with single load level fatigue life prediction equations and in good agreement. The SAS concept is can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers.

PWM Drive System Realization for Speed Control of TFM (횡축형 전동기의 속도제어를 위한 PWM 구동 드라이브 구현)

  • Lim, Tae-Yun;Kim, Dong-Hee;Kim, Jong-Moo;Jeong, Yeon-Ho;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1221-1223
    • /
    • 2000
  • TFM(Transeverse Flux Motor) is a switched reluctance motor with a new structure of novel design concept based on the high efficiency and power density compare to induction motor used on wide industrial field. To apply TFM to various industrial field instead of induction motor, an efficient converter drive system for speed and current control in TFM is required. This paper realized PWM asymmetric converter drive control system for TFM using IGBT and DSP. To certificate the high power and efficiency drive characteristics of realized PWM converter drive control system. simulation was excecuted on speed command and load variation using Matlab/Simulink.

  • PDF

Dynamic stability of a viscoelastically supported sandwich beam

  • Ghosh, Ranajay;Dharmavaram, Sanjay;Ray, Kumar;Dash, P.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.503-517
    • /
    • 2005
  • The parametric dynamic stability of an asymmetric sandwich beam with viscoelastic core on viscoelastic supports at the ends and subjected to an axial pulsating load is investigated. A set of Hill's equations are obtained from the non-dimensional equations of motion by the application of the general Galerkin method. The zones of parametric instability are obtained using Saito-Otomi conditions. The effects of shear parameter, support characteristics, various geometric parameters and excitation force on the zones of instability are investigated.