• Title/Summary/Keyword: astronomical components

Search Result 274, Processing Time 0.033 seconds

Chemical Composition of RR Lyn - an Eclipsing Binary System with Am and λ Boo Type Components

  • Jeong, Yeuncheol;Yushchenko, Alexander V.;Doikov, Dmytry N.;Gopka, Vira F.;Yushchenko, Volodymyr O.
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.75-82
    • /
    • 2017
  • High-resolution spectroscopic observations of the eclipsing binary system RR Lyn were made using the 1.8 m telescope at the Bohuynsan Optical Astronomical Observatory in Korea. The spectral resolving power was R = 82,000, with a signal to noise ratio of S/N > 150. We found the effective temperatures and surface gravities of the primary and secondary components to be equal to $T_{eff}$ = 7,920 & 7,210 K and log(g) = 3.80 & 4.16, respectively. The abundances of 34 and 17 different chemical elements were found in the atmospheric components. Correlations between the derived abundances with condensation temperatures and the second ionization potentials of these elements are discussed. The primary component is a typical metallic line star with the abundances of light and iron group elements close to solar values, while elements with atomic numbers Z > 30 are overabundant by 0.5-1.5 dex with respect to solar values. The secondary component is a ${\lambda}$ Boo type star. In this type of stars, CNO abundances are close to solar values, while the abundance pattern shows a negative correlation with condensation temperatures.

2DF ON THE AAT - PROJECT UPDATE AND FIRST SCIENTIFIC RESULTS

  • CANNON RUSSELL;TAYLOR KEITH
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.367-370
    • /
    • 1996
  • Construction of the 'Two-degree Field' (2dF) instrument on the Anglo-Australian Telescope (AAT) is now virtually complete and commissioning is well underway. The key components are described. Several recent milestones are reported, including the first scientific results. Future prospects and plans are discussed.

  • PDF

Characters of Perturbation in Earth's Spin Rotation

  • Na, Sung-Ho;Kwak, Younghee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.159.1-159.1
    • /
    • 2012
  • From the most recent dataset of the earth's spin rotation, we separate different frequency components of its perturbation and analyze their characteristics. Both changes of the earth's spin and pole position are considered.

  • PDF

Preliminary design of control software for SDSS-V Local Volume Mapper Instrument

  • Kim, Changgon;Ji, Tae-geun;Ahn, Hojae;Yang, Mingyeong;Lee, Sumin;Kim, Taeeun;Pak, Soojong;Konidaris, Nicholas P.;Drory, Niv;Froning, Cynthia S.;Hebert, Anthony;Bilgi, Pavan;Blanc, Guillermo A.;Lanz, Alicia E.;Hull, Charles L;Kollmeier, Juna A.;Ramirez, Solange;Wachter, Stefanie;Kreckel, Kathryn;Pellegrini, Eric;Almeida, Andr'es;Case, Scott;Zhelem, Ross;Feger, Tobias;Lawrence, Jon;Lesser, Michael;Herbst, Tom;Sanchez-Gallego, Jose;Bershady, Matthew A;Chattopadhyay, Sabyasachi;Hauser, Andrew;Smith, Michael;Wolf, Marsha J;Yan, Renbin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2021
  • The Local Volume Mapper(LVM) project in the fifth iteration of the Sloan Digital Sky Survey (SDSS-V) will produce large integral-field spectroscopic survey data to understand the physical conditions of the interstellar medium in the Milky Way, the Magellanic Clouds, and other local-volume galaxies. We are developing the LVM Instrument control software. The architecture design of the software follows a hierarchical structure in which the high-level software packages interact with the low-level and mid-level software and hardware components. We adopt the spiral software development model in which the software evolves by iteration of sequential processes, i.e., software requirement analysis, design, code generation, and testing. This spiral model ensures that even after being commissioned, the software can be revised according to new operational requirements. We designed the software by using the Unified Modeling Language, which can visualize functional interactions in structure diagrams. We plan to use the SDSS software framework CLU for the interaction between components, based on the RabbitMQ that implemented the Advanced Message Queuing Protocol (AMQP).

  • PDF

AN ANALYSIS OF STRUCTURE ON TIME SIGNAL SYSTEM OF HONCHEONSIGYE (혼천시계의 시보시스템 구조 분석)

  • Kim, Sang Hyuk;Lee, Yong Sam
    • Publications of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.17-23
    • /
    • 2013
  • Song I-Yeong (1619 ~ 1692), who was an astronomy professor of Gwansanggam (觀象監, Bureau of Astronomy), created the Honcheonsigye (渾天時計, Armillary Clock) in 1669 (10th year of King Hyeonjong Era). Honcheonsigye was a unique astronomical clock which combined an armillary sphere, the traditional astronomical instrument of the Far East, with the power mechanism of western alarm clock. The clock part of this armillary clock is composed of two major parts which are the going-train, power unit used the weight, and the time signal system in a wooden case. The time signal system is composed of four parts which are the time-annunciator, the striking train, the 12 different time-announcing medallions and the sound bell. This clock has been neglected for many years and its several components have been lost. This study is to understand the structure of time signal system and suggests the restoration process.

STUDY OF SUPERHUMPS IN THE RECENTLY DISCOVERED SU UMA DWARF NOVAE

  • VOLOSHINA, I.;KHRUZINA, T.;METLOV, V.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.241-245
    • /
    • 2015
  • In this work we present the results of light curve analysis for two cataclysmic variables detected recently in the SDSS project: SDSS J090350.73+330036.1 and J150240.98+333423.9. Photometric observations of the first were obtained during a superoutburst in May 2010. Our observations clearly indicate the presence of superhumps in the light curves, suggesting SDSS J090350.73+330036.1 is an SU UMa dwarf nova. We determined the period of the superhumps. We also carried out fitting using a spiral-arm model in order to determine parameters of the accretion disk, hot line, and other components of this system. Photometric observations of the second, J150240.98+333423.9, were obtained during the post-maximum decline, during April-June 2012. Photometric variability of this system has been studied in an inactive state. We obtained its parameters via a combined model fitted to the observed light curves by ${\chi}^2$ minimization.

Probing Cosmic Near Infrared Background using AKARI Data

  • Seo, Hyun Jong;Matsumoto, Toshio;Jeong, Woong-Seob;Lee, Hyung Mok;Matsuura, Shuji;Matsuhara, Hideo;Oyabu, Shinki;Pyo, Jeonghyun;Wada, Takehiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2013
  • The first generation stars in the universe are not observed as discrete objects by using current observational facilities, but their contributions are redshifted to the near infrared wavelength bands at present universe. Therefore, investigation of background radiation at near infrared is important for the study of the first stars. In this study, we present new observations of spatial fluctuations in sky brightness toward the north ecliptic pole using data from AKARI. Among pointed observation program of AKARI, we used two pointing surveys named Monitor field and NEP wide field at three wavelength bands 2.4, 3.2, and 4.1 ${\mu}m$. To obtain spatial fluctuations from observed images, first of all, we exclude pixels affected by resolved foreground objects and then obtain diffuse map which consists of diffused radiation only. Because the diffuse map contains not only cosmological components but also various foreground components, in order to detect cosmological components, we estimate the contributions of foreground components separately. The results of this study show that there remains excess spatial fluctuation that cannot be explained by known foreground sources. This work is based on observations with AKARI, a JAXA project with the participation of ESA.

  • PDF

Probing Cosmic Near Infrared Background using AKARI Data

  • Seo, Hyun Jong;Matsumoto, Toshio;Jeong, Woong-Seob;Lee, Hyung Mok;Matsuura, Shuji;Matsuhara, Hideo;Oyabu, Shinki;Pyo, Jeonghyun;Wada, Takehiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2013
  • The first generation stars in the universe are not observed as discrete objects by using current observational facilities, but their contributions are redshifted to the near infrared wavelength bands at present universe. Therefore, investigation of background radiation at near infrared is important for the study of the first stars. In this study, we present new observations of spatial fluctuations in sky brightness toward the north ecliptic pole using data from AKARI. Among pointed observation program of AKARI, we used two pointing surveys named Monitor field and NEP wide field at three wavelength bands 2.4, 3.2, and 4.1 ${\mu}$. To obtain spatial fluctuations from observed images, first of all, we exclude pixels affected by resolved foreground objects and then obtain diffuse map which consists of diffused radiation only. Because the diffuse map contains not only cosmological components but also various foreground components, in order to detect cosmological components, we estimate the contributions of foreground components separately. The results of this study show that there remains excess spatial fluctuation that cannot be explained by known foreground sources. This work is based on observations with AKARI, a JAXA project with the participation of ESA.

  • PDF