Browse > Article
http://dx.doi.org/10.5140/JASS.2017.34.2.75

Chemical Composition of RR Lyn - an Eclipsing Binary System with Am and λ Boo Type Components  

Jeong, Yeuncheol (Faculty of General Education, Sejong University)
Yushchenko, Alexander V. (Department of Astronomy and Space Science, Sejong University)
Doikov, Dmytry N. (Department of Mathematics, Physics and Astronomy, Odessa National Maritime University)
Gopka, Vira F. (Astronomical Observatory, Odessa National University)
Yushchenko, Volodymyr O. (Astronomical Observatory, Odessa National University)
Publication Information
Journal of Astronomy and Space Sciences / v.34, no.2, 2017 , pp. 75-82 More about this Journal
Abstract
High-resolution spectroscopic observations of the eclipsing binary system RR Lyn were made using the 1.8 m telescope at the Bohuynsan Optical Astronomical Observatory in Korea. The spectral resolving power was R = 82,000, with a signal to noise ratio of S/N > 150. We found the effective temperatures and surface gravities of the primary and secondary components to be equal to $T_{eff}$ = 7,920 & 7,210 K and log(g) = 3.80 & 4.16, respectively. The abundances of 34 and 17 different chemical elements were found in the atmospheric components. Correlations between the derived abundances with condensation temperatures and the second ionization potentials of these elements are discussed. The primary component is a typical metallic line star with the abundances of light and iron group elements close to solar values, while elements with atomic numbers Z > 30 are overabundant by 0.5-1.5 dex with respect to solar values. The secondary component is a ${\lambda}$ Boo type star. In this type of stars, CNO abundances are close to solar values, while the abundance pattern shows a negative correlation with condensation temperatures.
Keywords
stars; eclipsing binaries (RR Lyn); individual (RR Lyn); abundances; accretion; chemically peculiar;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Andrievsky SM, On the possible origin of $\lambda$ Boo stars, Astron. Astrophys. 321, 838-840 (1997).
2 Bensch K, Dimitrov W, Zywucka N, Fagas M, Kaminski K, et al., New spectroscopy of multiple stars RR Lyncis and HT Virginis, Inf. Bull. Var. Stars 6121, 1-7 (2014).
3 Biemont E, Palmeri P, Quinet P, Database on Rare Earths At Mons University (DREAM) [Internet], cited 2017 Apr 14, available from: http://hosting.umons.ac.be/html/agif/ databases/dream.html
4 Bohm-Vitense E, The puzzle of the metallic line stars, Publ. Astron. Soc. Pac. 118, 419-435 (2006). https://doi.org/10.1086/499385   DOI
5 Cowley CR, An examination of the planetesimal impact hypothesis of the formation of CP stars, Astrophys. Space Sci. 51, 349-362 (1977). https://doi.org/10.1007/BF00644158   DOI
6 Dellbouille L, Rolland G, Neven L, Photometric Atlas of the Solar Spectrum from $\lambda$ 3000 to $\lambda$ 10000 (University of Liege, Liege, 1973).
7 Drobyshevski EM, Peculiar A-stars and planetary systems, Astrophys. Space Sci. 35, 403-408 (1975). https://doi.org/10.1007/BF00637006   DOI
8 Fowler W, Burbidge EM, Burbidge GR, Hoyle F, The synthesis and destruction of elements in peculiar stars of types a and B, Astrophys. J. 142, 423-450 (1965). https://doi.org/10.1086/148309   DOI
9 Fuhr JR, Wiese WL, A critical compilation of atomic transition probabilities for neutral and singly ionized iron, J. Phys. Chem. Ref. Data 35, 1669-1809 (2006). https://doi.org/10.1063/1.2218876   DOI
10 Gopka VF, Yushchenko AV, Mishenina TV, Kim C, Musaev FA, et al., Atmospheric chemical composition of the halo star HD 221170 from a synthetic-spectrum analysis, Astron. Rep. 48, 577-587 (2004). https://doi.org/10.1134/1.1777275   DOI
11 Greenstein JL, Analysis of the metallic-line stars. II, Astrophys. J. 109, 121-138 (1949). https://doi.org/10.1086/145112   DOI
12 Grevesse N, Sauval AJ, The solar abundance of iron and the photospheric model, Astron. Astrophys. 347, 348-354 (1999).
13 Havnes O, Abundances and acceleration mechanisms of cosmic rays, Nature 229, 548-549 (1971). https://doi.org/10.1038/229548a0   DOI
14 Khaliullin KF, Khaliullina AI, Krylov AV, Precision WBVR photoelectric photometry of the eclipsing system RR Lyncis, Astron. Rep. 45, 888-898 (2001). https://doi.org/10.1134/1.1416278   DOI
15 Hirata R, Horaguchi T, VizieR Online Data Catalog: Atomic Spectral Line List, SIMBAD Catalog VI/69 (1995). available from: http://vizier.cfa.harvard.edu/viz-bin/Cat?VI/69
16 Kang YW, Yushchenko A, Hong K, Kim S, Yushchenko, V, Chemical composition of the components of eclipsing binary star ZZ Bootis, Astron. J. 144, A35 (2012). https://doi.org/10.1088/0004-6256/144/2/35   DOI
17 Kang YW, Yushchenko AV, Hong K, Guinan EF, Gopka VF, Signs of accretion in the abundance patterns of the components of the RS CVn-type eclipsing binary star LX Persei, Astron. J. 145, A167 (2013). https://doi.org/10.1088/0004-6256/145/6/167   DOI
18 Kurucz RL, SYNTHE spectrum synthesis programs and line data, in Kurucz CD-ROM 18 Series (Smithsonian Astrophysical Observatory, Cambridge, 1993).
19 Lyubimkov LS, Rachkovskaya TM, The Am binary star RR Lyn: chemical composition of the components, Astron. Rep. 39, 56-62 (1995).
20 Lodders K, Solar system abundances and condensation tempertures of the elements, Astrophys. J. 591, 1220-1247 (2003). https://doi.org/10.1086/375492   DOI
21 Michaud G, Diffusion processes in peculiar A stars, Astrophys. J. 160, 641-658 (1970). https://doi.org/10.1086/150459   DOI
22 Morton DC, Atomic data for resonance absorption lines. II. Wavelengths longward of the Lyman limit for heavy elements, Astrophys. J. Suppl. Ser. 130, 403-436 (2000). https://doi.org/10.1086/317349   DOI
23 Venn KA, Lambert DL, The chemical composition of three Lambda Bootis stars, Astrophys. J. 363, 234-244 (1990). https://doi.org/10.1086/169334   DOI
24 Piskunov NE, Kupka F, Ryabchikova TA, Weiss WW, Jeffery CS, VALD: the Vienna atomic line data base, Astron. Astrophys. Suppl. Ser. 112, 525-535 (1995).
25 Proffitt CR, Michaud G, Abundance anomalies in A and B stars and the accretion of nuclear-processed material from supernovae and evolved giants. Astrophys. J. 345, 998-1007 (1989). https://doi.org/10.1086/167969   DOI
26 Tomkin J, Fekel FC, New precision orbits of bright doublelined spectroscopic binaries. I. RR Lyncis, 12 Bootis, and HR 6169, Astron. J. 131, 2652-2663 (2006). https://doi.org/10.1086/501349   DOI
27 Venn KA, Lambert DL, Could the ultra-metal-poor stars be chemically peculiar and not related to the First stars, Astrophys. J. 677, 572-580 (2008). https://doi.org/10.1086/529069   DOI
28 Yushchenko AV, URAN: a software system for the analysis of stellar spectra, Proceedings of the 20th Stellar Conference of the Czech and Slovak Astronomical Institutes, ed. Dusek J (the Czech and Slovak Astonomical Institutes, Brno, 1998), 201-203.
29 Yushchenko AV, Gopka VF, Kang YW, Kim C, Lee BC, et al., The chemical composition of $\rho$ Puppis and the signs of accretion in the atmospheres of B-F-type stars, Astron. J. 149, A59 (2015). https://doi.org/10.1088/0004-6256/149/2/59   DOI
30 Yushchenko AV, Gopka VF, Khokhlova VL, Musaev FA, Bikmaev IF, Atmospheric chemical composition of the "twin" components of equal mass in the CP SB2 system 66 Eri, Astron. Lett. 25, 453-466 (1999).