• Title/Summary/Keyword: asthma : inflammation

Search Result 261, Processing Time 0.037 seconds

Association of wheezing phenotypes with fractional exhaled nitric oxide in children

  • Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.5
    • /
    • pp.211-216
    • /
    • 2014
  • Asthma comprises a heterogeneous group of disorders characterized by airway inflammation, airway obstruction, and airway hyperresponsiveness (AHR). Airway inflammation, which induces AHR and recurrence of asthma, is the main pathophysiology of asthma. The fractional exhaled nitric oxide (FeNO) level is a noninvasive, reproducible measurement of eosinophilic airway inflammation that is easy to perform in young children. As airway inflammation precedes asthma attacks and airway obstruction, elevated FeNO levels may be useful as predictive markers for risk of recurrence of asthma. This review discusses FeNO measurements among early-childhood wheezing phenotypes that have been identified in large-scale longitudinal studies. These wheezing phenotypes are classified into three to six categories based on the onset and persistence of wheezing from birth to later childhood. Each phenotype has characteristic findings for atopic sensitization, lung function, AHR, or FeNO. For example, in one birth cohort study, children with asthma and persistent wheezing at 7 years had higher FeNO levels at 4 years compared to children without wheezing, which suggested that FeNO could be a predictive marker for later development of asthma. Preschool-aged children with recurrent wheezing and stringent asthma predictive indices also had higher FeNO levels in the first 4 years of life compared to children with wheezing and loose indices or children with no wheeze, suggesting that FeNO measurements may provide an additional parameter for predicting persistent wheezing in preschool children. Additional large-scale longitudinal studies are required to establish cutoff levels for FeNO as a risk factor for persistent asthma.

Effects of Ascaris suum Extract and Sulfamethoxazole on Allergic Airway Inflammation

  • Cho, Eun-Sang;Park, Bae-Keun;Son, Hwa-Young
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.466-471
    • /
    • 2011
  • Allergic asthma is complex inflammatory airway disorder caused by genetic and environmental factors. Sulfamethoxazole, a sulfonamide, is the cause of drug rash with eosinophilia and systemic symptoms syndrome. Parasites infection also related with eosinophilia and allergic diseases. In the present study, we investigated the modulating effects of parasitic derivative and sulfamethoxazole (SMX) on allergic airway inflammation in the ovalbumin (OVA)-induced murine asthma model. Histopathological changes, cytokine secretion, and total and allergen-specific IgE were investigated. BALB/c mice were treated with Ascaris suum extract or SMX for 4 weeks before sensitized and challenged to ovalbumin. Pre-treatment of Ascaris suum extract decreased allergic inflammation in lung tissue and IL-4, total IgE, and OVA-specific IgE levels in bronchoalveolar lavage fluid. However, pre-treatment of SMX did not show any effects on allergic airway inflammation. These results indicate that parasitic infection has protective effects on allergic asthma, but the sulfamamides may not relate with allergic asthma.

The Role of Upper Airway Microbiome in the Development of Adult Asthma

  • Purevsuren Losol;Jun-Pyo Choi;Sae-Hoon Kim;Yoon-Seok Chang
    • IMMUNE NETWORK
    • /
    • v.21 no.3
    • /
    • pp.19.1-19.18
    • /
    • 2021
  • Clinical and molecular phenotypes of asthma are complex. The main phenotypes of adult asthma are characterized by eosinophil and/or neutrophil cell dominant airway inflammation that represent distinct clinical features. Upper and lower airways constitute a unique system and their interaction shows functional complementarity. Although human upper airway contains various indigenous commensals and opportunistic pathogenic microbiome, imbalance of this interactions lead to pathogen overgrowth and increased inflammation and airway remodeling. Competition for epithelial cell attachment, different susceptibilities to host defense molecules and antimicrobial peptides, and the production of proinflammatory cytokine and pattern recognition receptors possibly determine the pattern of this inflammation. Exposure to environmental factors, including infection, air pollution, smoking is commonly associated with asthma comorbidity, severity, exacerbation and resistance to anti-microbial and steroid treatment, and these effects may also be modulated by host and microbial genetics. Administration of probiotic, antibiotic and corticosteroid treatment for asthma may modify the composition of resident microbiota and clinical features. This review summarizes the effect of some environmental factors on the upper respiratory microbiome, the interaction between host-microbiome, and potential impact of asthma treatment on the composition of the upper airway microbiome.

Environmental tobacco smoke and childhood asthma

  • Song, Dae Jin
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.2
    • /
    • pp.121-128
    • /
    • 2010
  • In recent years, environmental tobacco smoke (ETS) has become an important worldwide public health issue. Children are particularly vulnerable to ETS because they are still developing. ETS exposure causes a wide range of adverse health effects on childhood asthma. There is convincing evidence that ETS exposure is causally associated with an increased prevalence of asthma, increased severity of asthma and worsening asthma control in children who already have the disease, even though a causal relationship with asthma onset is not yet established for asthma incidence. Mechanisms underlying these adverse effects of ETS are not clearly elucidated but e studies on this issue suggest that genetic susceptibility, impaired lung function, and augmented airway inflammation and remodeling may be involved. Children with asthma are just as likely to be exposed to ETS as children in general and there is no risk-free level of exposure. Therefore, providing a smoke-free environment may be of particular importance to the asthmatic children exposed to ETS who have adverse asthma outcomes, as well as to children with genetic susceptibility who are at increased risk of developing asthma upon exposure to ETS in early childhood.

Update in asthma management (천식치료의 최신지견)

  • Lee, Hae Ran
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.6
    • /
    • pp.581-588
    • /
    • 2006
  • Asthma is a chronic inflammation of the airway associated with increased bronchial hyperresponsiveness that leads to recurrent episodes of cough, wheezing, breathless, chest tightness. According the recent studies, repeated airway inflammation leads to structural changes so called 'airway remodeling' and associated with decreased pulmonary function. Airway remodeling begins form the early stage of asthma and the early diagnosis and management is very important to prevent airway remodeling. Medication for asthma can be classified into acute symptom reliever and chronic controller. Short acting beta2 agonist is a well-known reliever that reduced asthma symptoms within minutes. Controllers should be taken daily as a long-term basis to control airway inflammation. Inhaled corticosteroid(ICS) is the most effective controller in current use. However, in some patients ICS monotherapy is not sufficient to control asthma. In those cases, other medications such as long acting beta2 agonist, leukotriene modifier or sustained-release theophylline should be added to ICS, which called Add-on-Therapy. Combination inhaler devices are easy to use. Oral leukotriene modifier has a good compliance especially in children. Finally, as asthma is a chronic disease, the development of on-going partnership among health care professionals, the patients, and the patients' family is necessary for the effective management of asthma.

Neovastat(AE-941) inhibits the airway inflammation and hyperresponsiveness in a murine model of asthma

  • Lee, Sook-Young;Paik, Soon-Young;Chung, Su-Mi
    • Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • Matrix metalloproteinase (MMP)-9 plays an important role in the pathogenesis of bronchial asthma. Neovastat, having significant antitumor and antimetastatic properties, is classified as a naturally occurring multifunctional antiangiogenic agent. We evaluated the therapeutic effect of Neovastat on airway inflammation in a mouse model of asthma. BALB/c mice were immunized subcutaneously with ovalbumin (OVA) on days 0, 7, 14, and 21 and challenged with inhaled OVA on days 26, 29, and 31. Neovastat was administrated by gavage (5 mg/kg body weight) three times with 12 h intervals, beginning 30 min before OVA inhalation. On day 32, mice were challenged with inhaled methacholine, and enhanced pause (Penh) was measured as an index of airway hyperresponsiveness. The severity of airway inflammation was determined by differential cell count of bronchoalveolar lavage (BAL) fluid. The MMP-9 concentration in BAL fluid samples was measured by ELISA, and MMP-9 activity was measured by zymography. The untreated asthma group showed an increased inflammatory cell count in BAL fluid and Penh value compared with the normal control group. Mice treated with Neovastat had significantly reduced Penh values and inflammatory cell counts in BAL fluid compared with untreated asthmatic mice. Furthermore, mice treated with Neovastat showed significantly reduced MMP-9 concentrations and activity in BAL fluid. These results demonstrate that Neovastat might have new therapeutic potential for airway asthmatic inflammation.

Inhaled Corticosteroids Is Not Associated with the Risk of Pneumonia in Asthma

  • Ye Jin Lee;Yong-Bum Park
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.3
    • /
    • pp.151-157
    • /
    • 2023
  • The introduction of inhaled corticosteroids (ICS) for the management of asthma has led to a decrease in acute exacerbation of asthma. However, there are concerns regarding the safety of long-term ICS use, particularly pneumonia. Growing evidence indicates that ICS use is associated with an increased risk of pneumonia in patients with chronic obstructive pulmonary disease, whereas the risk in patients with asthma remains unclear. This review discusses the effect of ICS on pneumonia among patients with asthma to update the existing literature. Asthma is associated with an increased risk of pneumonia. Several hypotheses have been proposed to explain this association, including that asthma impairs the clearance of bacteria owing to chronic inflammation. Therefore, controlling airway inflammation with ICS may prevent the occurrence of pneumonia in asthma. In addition, two meta-analyses investigating randomized control trials showed that ICS use was associated with a protective effect against pneumonia in asthma.

Role of IL-23 and Th17 Cells in Airway Inflammation in Asthma

  • Nakajima, Hiroshi;Hirose, Koichi
    • IMMUNE NETWORK
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2010
  • Asthma is characterized by chronic airway inflammation with intense eosinophil and lymphocyte infiltration, mucus hyperproduction, and airway hyperresponsiveness. Accumulating evidence indicates that antigen-specific Th2 cells and their cytokines such as IL-4, IL-5, and IL-13 orchestrate these pathognomonic features of asthma. In addition, we and others have recently shown that IL-17-producing $CD4^+$ T cells (Th17 cells) and IL-23, an IL-12-related cytokine that is essential for survival and functional maturation of Th17 cells, are involved in antigen-induced airway inflammation. In this review, our current understanding of the roles of IL-23 and Th17 cells in the pathogenesis of allergic airway inflammation will be summarized.

Measurements of fractional exhaled nitric oxide in pediatric asthma

  • Hahn, Youn-Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.10
    • /
    • pp.424-430
    • /
    • 2013
  • Exhaled nitric oxide (NO) has been extensively investigated as a noninvasive marker of airway inflammation in asthma. The increased NO expression induced by inflammatory mediators in airways can be monitored easily in exhaled air from asthmatic children. Based on the relationship between the increased NO expression and eosinophilic airway inflammation, fractional exhaled nitric oxide (FeNO) measurements become an important adjunct for the evaluation of asthma. In addition, the availability of portable devices makes it possible to measure FeNO more easily and frequently in the routine pediatric practice. Despite various confounding factors affecting its levels, FeNO can be applicable in diagnosing asthma, monitoring treatment response, evaluating asthma control, and predicting asthma exacerbations. Thus, although pulmonary function tests are the standard tools for objective measurements of asthmatic control, FeNO can broaden the way of asthma monitoring and supplement standard clinical asthma care guidelines.

Suppressive Effect of 4-Hydroxy-2-(4-Hydroxyphenethyl) Isoindoline-1,3-Dione on Ovalbumin-Induced Allergic Asthma

  • Huang, Jin;Su, Mingzhi;Lee, Bo-Kyung;Kim, Mee-Jeong;Jung, Jee H.;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.539-545
    • /
    • 2018
  • 4-Hydroxy-2-(4-hydroxyphenethyl)isoindoline-1,3-dione (PD1) is a synthetic phthalimide derivative of a marine compound. PD1 has peroxisome proliferator-activated receptor (PPAR) ${\gamma}$ agonistic and anti-inflammatory effects. This study aimed to investigate the effect of PD1 on allergic asthma using rat basophilic leukemia (RBL)-2H3 mast cells and an ovalbumin (OVA)-induced asthma mouse model. In vitro, PD1 suppressed ${\beta}$-hexosaminidase activity in RBL-2H3 cells. In the OVA-induced allergic asthma mouse model, increased inflammatory cells and elevated Th2 and Th1 cytokine levels were observed in bronchoalveolar lavage fluid (BALF) and lung tissue. PD1 administration decreased the numbers of inflammatory cells, especially eosinophils, and reduced the mRNA and protein levels of the Th2 cytokines including interleukin (IL)-4 and IL-13, in BALF and lung tissue. The severity of inflammation and mucin secretion in the lungs of PD1-treated mice was also less. These findings indicate that PD1 could be a potential compound for anti-allergic therapy.