Browse > Article

Neovastat(AE-941) inhibits the airway inflammation and hyperresponsiveness in a murine model of asthma  

Lee, Sook-Young (Department of Internal Medicine, College of Medicine, The Catholic University of Korea)
Paik, Soon-Young (Department of Microbiology, College of Medicine, The Catholic University of Korea)
Chung, Su-Mi (Department of Radiation Oncology, College of Medicine, The Catholic University of Korea)
Publication Information
Journal of Microbiology / v.43, no.1, 2005 , pp. 11-16 More about this Journal
Abstract
Matrix metalloproteinase (MMP)-9 plays an important role in the pathogenesis of bronchial asthma. Neovastat, having significant antitumor and antimetastatic properties, is classified as a naturally occurring multifunctional antiangiogenic agent. We evaluated the therapeutic effect of Neovastat on airway inflammation in a mouse model of asthma. BALB/c mice were immunized subcutaneously with ovalbumin (OVA) on days 0, 7, 14, and 21 and challenged with inhaled OVA on days 26, 29, and 31. Neovastat was administrated by gavage (5 mg/kg body weight) three times with 12 h intervals, beginning 30 min before OVA inhalation. On day 32, mice were challenged with inhaled methacholine, and enhanced pause (Penh) was measured as an index of airway hyperresponsiveness. The severity of airway inflammation was determined by differential cell count of bronchoalveolar lavage (BAL) fluid. The MMP-9 concentration in BAL fluid samples was measured by ELISA, and MMP-9 activity was measured by zymography. The untreated asthma group showed an increased inflammatory cell count in BAL fluid and Penh value compared with the normal control group. Mice treated with Neovastat had significantly reduced Penh values and inflammatory cell counts in BAL fluid compared with untreated asthmatic mice. Furthermore, mice treated with Neovastat showed significantly reduced MMP-9 concentrations and activity in BAL fluid. These results demonstrate that Neovastat might have new therapeutic potential for airway asthmatic inflammation.
Keywords
airway resistance; asthma; inflammation; matrix metalloproteinase-9; neovastat;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 13
연도 인용수 순위
1 Kumagai, K., I. Ohno, S. Okada, Y. Ohkawara, S.K. uzuki, T. Shinya, H. Nagase, K. Iwata, and S.K. hirato. 1999. Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. J. Immunol. 162, 4212-4219   PUBMED
2 Lukacs, N.W. 2000. Migration of helper T-lymphocyte subsets into inflamed tissues. J. Allergy Clin. Immunol. 106, 264-269   DOI   ScienceOn
3 Okada, S., H. Kita, T.J. George, G.J. Gleich, and K.M. Leiferman. 1997. Migration of eosinophil through basement membrane components in vitro:role of matrix metalloproteinase-9. Am. J. Respir. Cell Mol. Biol. 17, 519-528   DOI   PUBMED   ScienceOn
4 Van Eerdewegh, P., R.D. Little, and J. Dupuis. 2002. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426-430   DOI   ScienceOn
5 Warner, J.A., P. Julius, W. Luttmann, and C. Kroegel. 1997. Matrix metalloproteinases in bronchoalveolar lavage fluid following antigen challenge. Int. Arch. Allergy Immunol. 113, 318-320   DOI   ScienceOn
6 Kelly, E.A. and N.N. Jarjour. 2003. Role of matrix metalloproteinases in asthma. Current Opinion in Pulmonary Medicine. 9, 28-33   DOI   PUBMED   ScienceOn
7 Gingras, D., A. Renaud, N. Mousseau, E. Beaulieu, Z. Kachra, and R. Beliveau. 2001. Matrix proteinase Inhibition by ${\AE}$-941, a multifunctional antiangiogenic compound. Anticancer Res. 21, 145-155   PUBMED
8 Mautino, G., N. Oliver, P. chanez, J. Bousquet, and F. Capony. 1997. Increased release of matrix metalloproteinase-9 in bronchoalveolar lavage fluid and by alveolar macrophgages of asthmatics. Am. J. Respir. Cell Mol. Biol. 17, 583-591   DOI   PUBMED   ScienceOn
9 Beliveau, R., D. Gingras, E.A. Kruger, S. Lamy, P. Sirois, B. Simard, M.G. Sirois, L. Tranqui, F. Baffert, E. Beaulieu, V. Dimitriadou, M.C. Pepin, F. Courjal, I. Ricard, P. Poyet, P. Falardeau, W.D. Figg, and E. Dupont. 2002. The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects. Clin. Cancer Res. 8, 1242-1250   PUBMED
10 Falardeau, P., P. Champagne, P. Poyet, C. Hariton, and E, Dupont. 2001. ${\AE}$-941 (Neovastat), a naturally occurring multifunctional anti-angiogenic product in Phase clinical trials. Semin. Oncol. 28, 620-625
11 Adcock, I.M. 1996. Steroid resistance in asthma. Molecular mechanisms. Am. J. Respir. Crit. Care Med. 154, S58-61   DOI
12 Gingras, D., G. Batist, and R. Beliveau. 2001. ${\AE}$-941 (Neovastat$^{\circledR}$): A novel multifunctional antiangiogenic compound. Expert Rev. Anticancer Ther. 1, 341-347   DOI   PUBMED   ScienceOn
13 Delcaux, C., C. Delacourt, M.P. d'Ortho, V. Boyer, C. Lafuma, and A. Harf. 1996. Role of gelatinase B and elastase in human polymorphonuclear neutrohil migration across basement membrane. Am. J. Respir. Cell Mol. Biol. 14, 288-295   DOI   PUBMED   ScienceOn
14 Boivin, D., S. Gendron, Beaulieu, D. Gingras, and R. Beliveau. 2002. The Antiangiogenic Agent Neovastat (${\AE}$-941) Induces Endothelial Cell Apoptosis. Molecular Cancer Therapeutics. 1, 795-802   PUBMED
15 Stricklin, G. and H. Welgus. 1983. Human skin fibroblasts collagenase inhibitor : purification and biochemical characterization. J. Biol. Chem. 258, 12252-12258   PUBMED
16 Lee, K.S., S.M. Jin, H.J. Kim, and Y.C. Lee. 2003. Matrix metalloproteinase inhibitor regulates inflammatory cell migration by reducing ICAM-1 and VCAM-1 expression in a murine model of toluene diisocyanate-induced asthma. J. Allergy Clin. Immunol. 111, 1278-1284   DOI   ScienceOn
17 Castronovo, V., V. Dimitriadou, P. Savard, M. Riviere, and E. Dupont. 1999. Cartilage as a source of natural inhibitors of angiogenesis. Antiangiogenic Agents in Cancer Therapy, p. 175-83. Humana Press, Totowa, New Jersey
18 Dunnill, M.S. 1960. The pathology of asthma with special reference to changes in the bronchial mucosa. J. Clin. Patho. 13, 27-33   DOI   PUBMED
19 Jonathan, P.A. and T.H. Lee. 1992. The pathobiology of bronchial asthma. Adv. Immunol. 51, 323-329   DOI   PUBMED
20 Lee, Y.C., C.H. Song, H.B. Lee, J.L. Oh, Y.K. Rhee, H.S. Park, and G.Y. Koh. 2001. A murine model of toluene diisocyanate-induced asthma can be treated with matrix metalloproteinase inhibitor. J. Allergy Clin. Immunol. 108, 1021-1026   DOI   ScienceOn
21 Stetler-Stevenson, W.G., H.C. Krutzsch, and L.A. Liotta. 1989. Tissue inhibitor of metalloproteinase (TIMP-2): A new member of the metalloproteinase family. J. Biol Chem. 264, 17374-17378   PUBMED
22 Nagase, H. 1997. Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378, 151-160   PUBMED
23 Cho, J.Y., M. Miller, K.J. Baek, G. W. Han, J. Nayar, M. Rodriguez, S.Y. Lee, K. McElwain, S. McElwain, E. Raz, and D.H. Broide. 2004. Immunostimulatory DNA Inhibits Transforming Growth Factor-$\beta$ Expression and Airway Remodeling. Am. J. Respir. Cell Mol. Biol. 30, 651-661   DOI   ScienceOn
24 Yang, H., S. Han, H. Kim, Y.M. Choi, K.J. Hwang, H.C. Kwon, S.K. Kim, and D.J. Cho. 2002. Expression of integrines, cyclooxygenases and matrix metalloproteinases in threedimensional human endometrial cell culture system. Exp. Mol. Med. 34, 75-82   DOI   PUBMED   ScienceOn
25 Sternlicht, M.D. and Z. Werb. 2001. How Matrix Metalloproteinases Regulate Cell Behavior. Ann. Rev. Cell Dev. Biol. 17, 463-516   DOI   ScienceOn
26 Li, X. and J.W. Wilson. 1997. Increased vascularity of the bronchial mucosa in mild asthma. Am. J. Respir. Crit. Card. Med. 156, 229-233   DOI   ScienceOn
27 Leppert, D., E. Waubant, R. Galardy, N.W. Bunnett, and S.L. Hauser. 1995. T cell gelatinases mediate basement membrane transmigration in vitro. J. Immunol. 154, 4379-4389   PUBMED