• Title/Summary/Keyword: asteroids

Search Result 118, Processing Time 0.023 seconds

Magnetic Mineral Identification in Meteorites (잔류자화비를 이용한 운석의 자성광물 판별)

  • Kim, In-Ho;Yu, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Meteorites are extraterrestrial solid rock fragments that fell from the outer space. Investigating mineral magnetic properties of the Meteorites is essential in understanding the evolution of planets and asteroids in the Solar System. In particular, magnetic characterization of magnetic mineral can provide constraints on the progress of differentiation in ancient planetary bodies. In the present study, ratio of thermoremanent magnetization (TRM) over saturation isothermal remanent magnetization (SIRM) was applied to diagnose the magnetic minerals in meteorites and igneous rocks. Distinctive classification of TRM/SIRM suggests that kamacite, tetrataenite, magnetite, and (Cr,Ti)-rich iron oxide are responsible for the magnetization of H5 Richardton, LL6 St. Severin, ALH84001, and DaG476, respectively. The TRM/SIRM ratio could be an efficient tool in identifying magnetic minerals especially when rocks or meteorites contain unstable material under heating.

DEEP-South: The Photometric Study of Non-Principal Axis Rotator (5247) Krylov

  • Lee, Hee-Jae;Moon, Hong-Kyu;Kim, Myung-Jin;Kim, Chun-Hwey;Durech, Josef;Park, Jintae;Roh, Dong-Goo;Choi, Young-Jun;Yim, Hong-Suh;Oh, Young-Seok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.49.2-49.2
    • /
    • 2016
  • The number of discovery of asteroids with peculiar rotational states has recently increased, and hence a novel approach for lightcurve analysis is considered to be critical. In order to investigate objects such as Non-Principal Axis (NPA) rotator, we selected a NPA candidate, (5247) Kryolv as our target considering its Principal Axis Rotation (PAR) code and the visibility in early 2016. The observations of Krylov were made using Korea Microlensing Telescope Network (KMTNet) 1.6 m telescopes installed at the three southern sites with TO (Target of Opportunity) observation mode. We conducted R-band time-series photometry over a total of 51 nights from January to April 2016 with several exposures during each allocated run. The ensemble normalization photometry was employed using the AAVSO Photomtric All-Sky Survey (APASS) catalog for the standardization. We successfully confirmed its NPA spin state based on the deviation from the reduced lightcurve, and thus Krylov is recorded as the first NPA rotator of its kind in the main-belt, with its precession and rotation periods, $P{\varphi}=81.18h$ and $P_{\Psi}=67.17h$, respectively. In this paper, we present the spin direction, the 3D shape model and taxonomy of the newly confirmed NPA asteroid (5247) Krylov.

  • PDF

KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES

  • KIM, SEUNG-LEE;LEE, CHUNG-UK;PARK, BYEONG-GON;KIM, DONG-JIN;CHA, SANG-MOK;LEE, YONGSEOK;HAN, CHEONGHO;CHUN, MOO-YOUNG;YUK, INSOO
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

The Spin State of NPA Rotator (5247) Krylov

  • Lee, Hee-Jae;Durech, Josef;Kim, Myung-Jin;Moon, Hong-Kyu;Kim, Chun-Hwey;Park, Jintae;Kim, Dong-Heun;Roh, Dong-Goo;Choi, Young-Jun;Yim, Hong-Suh;the DEEP-South Team
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.50.1-50.1
    • /
    • 2017
  • The Non-Principal Axis (NPA) rotators can be clues to spin evolutionary processes of asteroids because their excited spin states evolve due to either internal or external forces. The NPA rotation of (5247) Krylov was confirmed by Lee et al. (2017) based on KMTNet photometric observations during the 2016 apparition. We conducted follow-up observations in 2017 apparition using the 0.6-2.1m telescopes in the northern hemisphere to determine the spin state and shape model of this asteroid. We found that it is rotating in the Short Axis Mode (SAM) based on the determined rotation period ($P_{\psi}=374.6hr$) and precession period ($P_{\phi}=67.48hr$). The greatest and intermediate principal inertia moments are nearly the same as $I_b/I_c=0.94$, but the smallest principal inertia moments are nearly half that of the others, $I_a/I_c=0.43$. This ratio of principal inertia moments suggests that dynamically equivalent shape of this asteroid is close to that of a prolate ellipsoid. In this presentation, we will provide the physical model of (5247) Krylov to discuss its possible spin evolutionary processes that acted on its spin.

  • PDF

Analysis of Periodic Orbits about the Triangular Solutions of the Restricted Sun-Jupiter and Earth-Moon Problem (제한 3체 문제에 있어서 태양-목송계와 지구-달계의 $L_5$ 점 주위에 존재하는 주기궤도 분석)

  • 박상영;조중현;이병선;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.129-141
    • /
    • 1988
  • Using the numerical solution in the plane restricted problem of three bodies, abut 490 periodic orbits are computed numerically around the $L_5$ of Sun-Jupiter and about 1600 periodic orbits also be done around the $L_5$ of Sun-Jupiter system. But, in Earth-Moon system, the complex shapes and dents appear around the $L_5$ and periodic orbits intersect one another in the place where dents are shown. And there is a region that three different periodic orbits exist with the same period in this system. The increase of energy is in inverse proportion to that of period in the part of this region. The regions can exist around the $L_5$ of Sun-Jupiter system where periodic orbit can be unstable by perturbation of other force besides the gravitational force of Jupiter. These regions which is close to $L_5$ are a~5.12 AU. The Trojan asteroids that have a small eccentricity and inclination can not exist in this region.

  • PDF

Fauna of Echinoderms from Jindo Island and Its Adjacent Waters, Korea (진도 해역의 극피동물상)

  • Shin Sook
    • Animal Systematics, Evolution and Diversity
    • /
    • no.nspc5
    • /
    • pp.47-60
    • /
    • 2005
  • The joint faunal survey of Jindo Island, Korea was performed by the Korean Society of Systematic Zoology during June 29-July 1, 2004 in commemoration of the 20th anniversary. In this study, 20 echinoderm species of 13 families, ten orders in four classes such as one crinoid species, seven asteroid species of four families in three orders, five ophiuroid species of three families in two orders, four echinoid species of two families in one order, and three holothuroid species of three families in three orders collected from six localities (Bealpo, Chopyung, Supum, Hoedong, Seomang, and $34^{\circ}11'N\;and\;126^{\circ}21'E)$ were identified. Of these, one crinoid (Antedon serrata), two asteroids (Solaster dawsoni and Distolasterias nipon) and one pohiudoid (Astrodendrum sagaminum) are newly added to the echinoderm fauna of Jindo Island and one holothudoid (Pseudocnus sp.) is newly recorded in Korean waters. The total 31 species are presently listed with some brief remarks and their distribution patterns are discussed based on the composition of geographical distribution forms.

The Geometric Albedo of (4179) Toutatis

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Jin, Sunho;Yang, Hongu;Moon, Hong-Kyu;Choi, Young-Jun;JeongAhn, Youngmin;Kim, Myung-Jin;Kwak, Sungwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.44.4-45
    • /
    • 2018
  • (4179) Toutatis (Toutatis hereafter) is one of the Near-Earth Asteroids which has been studied most rigorously not only via ground-based photometric, spectroscopic, polarimetric, and radar observations, but also via the in-situ observation by the Chinese Chang'e-2 spacecraft. However, one of the most fundamental physical properties, the geometric albedo, is less determined. In order to derive the reliable geometric albedo and further study the physical condition on the surface, we made photometric observations of Toutatis near the opposition (i.e., the opposite direction from the Sun). We thus observed it for four days on 2018 April 7-13 using three 1.6-m telescopes, which consist of the Korean Microlensing Telescope Network (KMTNet). Since the asteroid has a long rotational period (5.38 and 7.40 days from Chang'e-2, Zhao et al., 2015), the continuous observations with KMTNet matches the purpose of our photometric study of the asteroid. The observed data cover the phase angle (Sun-asteroid-observer's angle) of 0.65-2.79 degree. As a result, we found that the observed data exhibited the magnitude changes with an amplitude of ~0.8 mag. We calculated the time-variable geometrical cross-section using the radar shape model (Hudson & Ostro 1995), and corrected the effect from the observed data to derive the geometric albedo. In this presentation, we will present our photometric results. In addition, we will discuss about the regolith particles size together with the polarimetric properties based on the laboratory measurements of albedo-polarization maximum.

  • PDF

Geotechnical Exploration Technologies for Space Planet Mineral Resources Exploration (우주 행성 광물 자원 탐사를 위한 지반 탐사 기술)

  • Ryu, Geun-U;Ryu, Byung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.19-33
    • /
    • 2022
  • Planarity geotechnical exploration missions were actively performed during the 1970s and there was a period of decline from the 1 990s to the 2000s because of budget. However, exploring space resources is essential to prepare for the depletion of Earth's resources in the future and explore resources abundant in space but scarce on Earth, such as rare earth and helium-3. Additionally, the development of space technology has become the driving force of future industry development. The competition among developed countries for exoplanet exploration has recently accelerated for the exploration and utilization of space resources. For these missions and resource exploration/mining, geotechnical exploration is required. There have been several missions to explore exoplanet ground, including the Moon, Mars, and asteroids. There are Apollo, LUNA, and Chang'E missions for exploration of the Moon. The Mars missions included Viking, Spirit/Opportunity, Phoenix, and Perseverance missions, and the asteroid missions included the Hayabusa missions. In this study, space planetary mineral resource exploration technologies are explained, and the future technological tasks of Korea are described.

Rotational instability as a source of asteroidal dust near Earth

  • Jo, Hangbin;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.44.2-45
    • /
    • 2021
  • As implied by the zodiacal light and spacecraft impact measurements, the space between large bodies in our Solar System is filled with interplanetary dust particles (IDPs). IDPs give us deeper insight into the composition and evolution of the Solar System, as well as being a crucial reference for extrasolar research. IDPs can be interpreted as bearers of carbon and organic materials, and thus, their interaction with Earth can be considered as important factors for the birth of terrestrial life. One of the key routes of IDPs entering Earth is via meteoroid streams (Love and Brownlee 1993). The Geminid meteoroid stream is a notable example. Together with its source asteroid (3200) Phaethon, the Phaethon-Geminid stream complex (PGC) (Whipple 1983; Gustafson 1989) can potentially provide information on the properties and evolution of IDPs in near-Earth space. DESTINY+* is a JAXA/ISAS spacecraft planned to launch in 2024 to explore the physical and chemical features of near-Earth IDPs and uncover the dust ejection mechanism of active near-Earth asteroids, especially Phaethon (Arai et al. 2018). Previous studies on the dust ejection mechanism of Phaethon have various degrees of success in explaining the ejection of submillimeter particles and try to recreate the dust replenishment rate of the Geminid stream. However, none of them are satisfactory for explaining the observed Geminid stream, especially for larger particles of a millimeter and centimeter scales. Inspired by the discovery of rotational mass shedding in the Main Belt region (Jewitt et al., 2014), we investigate a dust ejection scenario by rotational instability on Phaethon. Using the N-body integrator MERCURY6 (Chambers 1999; modified by Jeong 2014), we performed a long-term integration of dust particles of various sizes ejected at ~1 m/s. Through this process, we discuss the implications Phaethon's rotation may have on its ejection, the formation and evolution of IDP by this mechanism, and contribute to the DESTINY+ mission.

  • PDF

Surface exposure age of (25143) Itokawa estimated from the number of mottles on the boulder

  • Jin, Sunho;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.45.2-46
    • /
    • 2020
  • Various processes, such as space weathering and granular convection, are occurring on asteroids' surfaces. Estimation of the surface exposure timescale is essential for understanding these processes. The Hayabusa mission target asteroid, (25143) Itokawa (Sq-type) is the only asteroid whose age is estimated from remote sensing observations as well as sample analyses in laboratories. There is, however, an unignorable discrepancy between the timescale derived from these different techniques. The ages estimated based on the solar flare track density and the weathered rim thickness of regolith samples range between 102 and 104 years [1][2]. On the contrary, the ages estimated from the crater size distributions and the spectra cover from 106 to 107 years [3][4]. It is important to notice that there is a common drawback of both age estimation methods. Since the evidence of regolith migration is found on the surface of Itokawa [5], the surficial particles would be rejuvenated by granular convection. At the same time, it is expected that the erasure of craters by regolith migration would affect the crater size distribution. We propose a new technique to estimate surface exposure age, focusing on the bright mottles on the large boulders. Our technique is less prone to the granular convection. These mottles are expected to be formed by impacts of mm to cm-sized interplanetary particles. Together with the well-known flux model of interplanetary dust particles (e.g., Grün, 1985 [6]), we have investigated the timescale to form such mottles before they become dark materials again by the space weathering. In this work, we used three AMICA (Asteroid Multi-band Imaging Camera) v-band images. These images were taken on 2005 November 12 during the close approach to the asteroid. As a result, we found the surface exposure timescales of these boulders are an order of 106 years. In this meeting, we will introduce our data analysis technique and evaluate the consistency among previous research for a better understanding of the evolution of this near-Earth asteroid.

  • PDF