• Title/Summary/Keyword: association mining

Search Result 1,061, Processing Time 0.03 seconds

Detection of Malicious Code using Association Rule Mining and Naive Bayes classification (연관규칙 마이닝과 나이브베이즈 분류를 이용한 악성코드 탐지)

  • Ju, Yeongji;Kim, Byeongsik;Shin, Juhyun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1759-1767
    • /
    • 2017
  • Although Open API has been invigorated by advancements in the software industry, diverse types of malicious code have also increased. Thus, many studies have been carried out to discriminate the behaviors of malicious code based on API data, and to determine whether malicious code is included in a specific executable file. Existing methods detect malicious code by analyzing signature data, which requires a long time to detect mutated malicious code and has a high false detection rate. Accordingly, in this paper, we propose a method that analyzes and detects malicious code using association rule mining and an Naive Bayes classification. The proposed method reduces the false detection rate by mining the rules of malicious and normal code APIs in the PE file and grouping patterns using the DHP(Direct Hashing and Pruning) algorithm, and classifies malicious and normal files using the Naive Bayes.

Analysis of Internet User Features using Multi-dimensional Association Analysis (다차원 연관 분석을 이용한 인터넷 이용자의 특징 분석)

  • Lee, Su-Eun;Jung, Yong-Gyu
    • Journal of Service Research and Studies
    • /
    • v.1 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Data mining that can not be extracted with a simple query in the form of "useful" means to find information in large databases from the existing and unknown knowledge. It is based on this insight about the data can be defined as a gain. In this paper, we use the Internet to find useful patterns on the Web or saved data to the target Web site, which is to analyze the characteristics of users. A general statistical information on Internet users to the data by applying a relevance analysis, Internet use affect the amount of time to analyze the characteristics of Internet users. Only through experiments extracting data from the association rules, producing optimal results apply for the data pre-processing and algorithm for mining the Web to Internet users. characteristics were analyzed.

  • PDF

Association Service Mining using Level Cross Tree (레벨 교차 트리를 이용한 연관 서비스 탐사)

  • Hwang, Jeong Hee
    • Journal of Digital Contents Society
    • /
    • v.15 no.5
    • /
    • pp.569-577
    • /
    • 2014
  • The various services are required to user in time and space. It is important to provide suitable service to user according to user's circumstance. Therefore it is need to provide services to user through mining by latest information of user activity and service history. In this paper we propose a mining method to search association rule using service history based on spatiotemporal information and service ontology. In this method, we find the associative service pattern using level-cross tree on service ontology. The proposed method is to be a basic research to find the service pattern to provide high quality service to user according to season, location and age under the same context.

Analysis of Customer Behavior and Trend of Manufacture (제조업분야의 고객 성향 및 추이 분석)

  • Lee, Byoung-Yup;Yim, Seung-Bin;Park, Yong-Hoon;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.336-343
    • /
    • 2009
  • Companies often use database for performing task more efficiently and data mining for marketing and production efficiency through analyzing of the stored database. The use of the knowledge through the data mining maintains and provides a direction of development for the company. It could be as an additional competitive power for the company when decision making is necessary. This study is designing a model that predicts a rating of existing customer and consumption pattern with using actual data of the manufacturer and data mining methodology. The objective of this model is to improve profits for the company and brand value through connecting the marketing with identifying the customer's rating and consumer behavior.

Overview of frequent pattern mining

  • Jurg Ott;Taesung Park
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.39.1-39.9
    • /
    • 2022
  • Various methods of frequent pattern mining have been applied to genetic problems, specifically, to the combined association of two genotypes (a genotype pattern, or diplotype) at different DNA variants with disease. These methods have the ability to come up with a selection of genotype patterns that are more common in affected than unaffected individuals, and the assessment of statistical significance for these selected patterns poses some unique problems, which are briefly outlined here.

Temporal Associative Classification based on Calendar Patterns (캘린더 패턴 기반의 시간 연관적 분류 기법)

  • Lee Heon Gyu;Noh Gi Young;Seo Sungbo;Ryu Keun Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.6
    • /
    • pp.567-584
    • /
    • 2005
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from temporal data. Association rules and classification are applied to various applications which are the typical data mining problems. However, these approaches do not consider temporal attribute and have been pursued for discovering knowledge from static data although a large proportion of data contains temporal dimension. Also, data mining researches from temporal data treat problems for discovering knowledge from data stamped with time point and adding time constraint. Therefore, these do not consider temporal semantics and temporal relationships containing data. This paper suggests that temporal associative classification technique based on temporal class association rules. This temporal classification applies rules discovered by temporal class association rules which extends existing associative classification by containing temporal dimension for generating temporal classification rules. Therefore, this technique can discover more useful knowledge in compared with typical classification techniques.

Prediction of Implicit Protein - Protein Interaction Using Optimal Associative Feature Rule (최적 연관 속성 규칙을 이용한 비명시적 단백질 상호작용의 예측)

  • Eom, Jae-Hong;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.365-377
    • /
    • 2006
  • Proteins are known to perform a biological function by interacting with other proteins or compounds. Since protein interaction is intrinsic to most cellular processes, prediction of protein interaction is an important issue in post-genomic biology where abundant interaction data have been produced by many research groups. In this paper, we present an associative feature mining method to predict implicit protein-protein interactions of Saccharomyces cerevisiae from public protein interaction data. We discretized continuous-valued features by maximal interdependence-based discretization approach. We also employed feature dimension reduction filter (FDRF) method which is based on the information theory to select optimal informative features, to boost prediction accuracy and overall mining speed, and to overcome the dimensionality problem of conventional data mining approaches. We used association rule discovery algorithm for associative feature and rule mining to predict protein interaction. Using the discovered associative feature we predicted implicit protein interactions which have not been observed in training data. According to the experimental results, the proposed method accomplished about 96.5% prediction accuracy with reduced computation time which is about 29.4% faster than conventional method with no feature filter in association rule mining.

An Alert Data Mining Framework for Intrusion Detection System (침입탐지시스템의 경보데이터 분석을 위한 데이터 마이닝 프레임워크)

  • Shin, Moon-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.459-466
    • /
    • 2011
  • In this paper, we proposed a data mining framework for the management of alerts in order to improve the performance of the intrusion detection systems. The proposed alert data mining framework performs alert correlation analysis by using mining tasks such as axis-based association rule, axis-based frequent episodes and order-based clustering. It also provides the capability of classify false alarms in order to reduce false alarms. We also analyzed the characteristics of the proposed system through the implementation and evaluation of the proposed system. The proposed alert data mining framework performs not only the alert correlation analysis but also the false alarm classification. The alert data mining framework can find out the unknown patterns of the alerts. It also can be applied to predict attacks in progress and to understand logical steps and strategies behind series of attacks using sequences of clusters and to classify false alerts from intrusion detection system. The final rules that were generated by alert data mining framework can be used to the real time response of the intrusion detection system.

Is Text Mining on Trade Claim Studies Applicable? Focused on Chinese Cases of Arbitration and Litigation Applying the CISG

  • Yu, Cheon;Choi, DongOh;Hwang, Yun-Seop
    • Journal of Korea Trade
    • /
    • v.24 no.8
    • /
    • pp.171-188
    • /
    • 2020
  • Purpose - This is an exploratory study that aims to apply text mining techniques, which computationally extracts words from the large-scale text data, to legal documents to quantify trade claim contents and enables statistical analysis. Design/methodology - This is designed to verify the validity of the application of text mining techniques as a quantitative methodology for trade claim studies, that have relied mainly on a qualitative approach. The subjects are 81 cases of arbitration and court judgments from China published on the website of the UNCITRAL where the CISG was applied. Validation is performed by comparing the manually analyzed result with the automatically analyzed result. The manual analysis result is the cluster analysis wherein the researcher reads and codes the case. The automatic analysis result is an analysis applying text mining techniques to the result of the cluster analysis. Topic modeling and semantic network analysis are applied for the statistical approach. Findings - Results show that the results of cluster analysis and text mining results are consistent with each other and the internal validity is confirmed. And the degree centrality of words that play a key role in the topic is high as the between centrality of words that are useful for grasping the topic and the eigenvector centrality of the important words in the topic is high. This indicates that text mining techniques can be applied to research on content analysis of trade claims for statistical analysis. Originality/value - Firstly, the validity of the text mining technique in the study of trade claim cases is confirmed. Prior studies on trade claims have relied on traditional approach. Secondly, this study has an originality in that it is an attempt to quantitatively study the trade claim cases, whereas prior trade claim cases were mainly studied via qualitative methods. Lastly, this study shows that the use of the text mining can lower the barrier for acquiring information from a large amount of digitalized text.

A Study of Association Rule Mining by Clustering through Data Fusion

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.927-935
    • /
    • 2007
  • Currently, Gyeongnam province is executing the social index survey every year to the provincials. But, this survey has the limit of the analysis as execution of the different survey per 3 year cycles. The solution of this problem is data fusion. Data fusion is the process of combining multiple data in order to provide information of tactical value to the user. But, data fusion doesn#t mean the ultimate result. Therefore, efficient analysis for the data fusion is also important. In this study, we present data fusion method of statistical survey data. Also, we suggest application methodology of association rule mining by clustering through data fusion of statistical survey data.

  • PDF