• Title/Summary/Keyword: assembly task

Search Result 159, Processing Time 0.026 seconds

A study on Precise Grasping Control of End-Effector for Parts Assembling and Handling (부품조립 및 핸들링을 위한 말단효과장치의 정밀 그리핑 제어에 관한 연구)

  • Ha, Un-Tae;Sung, Ki-Won;Kang, Eun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.173-180
    • /
    • 2015
  • In this paper, we propose a new precise control technology of robotic gripper for assembling and handling of part. When a robot manipulator interacts mechanically with its environment to perform tasks such as assembly or edge-finishing, the end-effector is thereby constrained by the environment. Therefore grasping force control is very important, since it increases safety due to monitoring of contact force. A comparison of various force control architecture is reported. Different force control methods can often be configured to achieve similar results for a given task, and the choice of control algorithm depends strongly on the application or on the characteristics of a particular robot. In the research, the adjustable gripping force can be controlled and improved the accuracy using the artificial intelligence techniques.

A study on the implementation of material handling system with part feeder (파트 피이더를 포함한 물류처리 시스템의 기술개발에 관한 연구)

  • 이원식;전흥주;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.417-422
    • /
    • 1990
  • For the robot manipulator in performing precision task, it is indispensable that the robot utilize the various sensors for intelligence. This paper presents the development and implementation of an integrated control system for the control of robotic manipulator, a feeder, a conveyor belt system, force/torque sensor system, and a photo sensor system. Micro controller board was constructed for hierarchical control of the system. To set up the program interactively, a user can make use of the software which includes the full-down menu and a dialog box. The user can make progress the program quickly and easily by a mouse. The related software was written in C and assembly languages.

  • PDF

SAITEL : an easy robot language to use for SCARA type robots (사용에 편리한 ROBOT 언어 (SAITEL)의 개발)

  • 이영우;이관형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.502-507
    • /
    • 1990
  • The robot operation by teach playback is easy and was widely used for simple jobs performed by a simple robot manipulator. However, as robots and their control systems and tasks become more and more sophisticated, such a simple robot operation is no longer adequate and programming languages capable for the complicated systems and tasks are greatly needed. In this paper, a high-level robot-specific programming language, SAITEL, is presented. It is an interpreter, based on Assembly, and has form similar to BASIC. SAITEL is easy to use for people who are not skilled programmers, and provides the capability to define robot task very conveniently. SAITEL was implemented on a direct drive SCARA robot developed in the Samsung Advanced Institute of Technology, and proved to be very useful for the operation of SCARA-type robots. It can be used also for other types of robots by slight modification.

  • PDF

A neural network method for recognition of part orientation in a bowl feeder (보울 피이더에서 신경 회로망을 이용한 부품 자세 인식에 관한 연구)

  • 임태균;김종형;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.275-280
    • /
    • 1990
  • A neural network method is applied for recognizing the orientation o f individual parts being fed from a bowl feeder. The system is designed in such a way that a part can be discriminated and sorting according to every possible stable orientation without implementing any a mechanical tooling. The operation of the bowl feeder is based on a 2D image obtained from an array of fiber optic sensor located on the feeder track. The acquired binary image of a moving and vibrating part is used as input to a neural network which, in turn, determines t he orientation of the part. The main task of the neural network, here is to synthesize the appropriate internal discriminant functions for the part orientation using the part features. A series of the experiments reveals several promising points on performance. Since the operation of the feeder is highly programmable, it is well suited for feeding and sorting small parts prior to small batch assembly work.

  • PDF

Design of DNP Controller for Robust Control Auto-Systems (DNP에 의한 자동화 시스템의 강인제어기 설계)

  • 김종옥;조용민;민병조;송용화;조현섭
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.121-126
    • /
    • 1999
  • In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed. In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. Also, the learning architecture to compute inverse kinematic coordinates transformations in the manipulator of auto-equipment systems is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

  • PDF

A Study on Compliance Control of a SCARA Robot (스카라 로보르에 대한 순응성 제어에 관한 연구)

  • Yee, Yang-Hee;Do, Mi-Sun;Kim, Sung-Woo;Park, Mig-Non;Lee, Sang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.514-517
    • /
    • 1990
  • In this paper, compliant motion control of a manipualator in manipulator is proposed by using the self-tuning adaptive controller. Compliant motion is needed in order to applicated to complicated and accurate fields such as assembly operation in which several parts are matched. For a control method of compliant motion hybrid control is used so forces and position control are proposed selectively through a closed feedback loop. By contacting with environment, the uncertainties higher. Self-tuning controller which adapts to variable dynamic response is applied to compliant motion control in order to satisfy the desired operation. The applicability of the suggested algorithm was confined by simulation of the contour tracking task of four joint manipulator.

  • PDF

An Experimental Study on the Squeal Noise Generated in Friction Surface of Disk Brake (디스크 브레이크의 마찰면에서 발생되는 스퀼소음에 관한 실험적 연구)

  • 이해철;이원평;차경옥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.26-31
    • /
    • 2000
  • There are various noises generated by friction. Among the rest, eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. The parameters affecting brake squeal noise are the material properties of the braking pad, the dynamic properties of the brake parts and the dimensions of the brake assembly etc. Also, the squeal noise changes its inherent form with the normal load and sliding speed. In this study, the characteristics of brake squeal noise generated by friction is analyzed experimentally. The experiment focused on the analysis of friction self-excited vibration and squeal noise level. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding speeds. And Friction self-excited vibration is raised the brake squeal noise.

  • PDF

Design of DNP Controller for Robust Control of Auto-Equipment Systems (자동화 설비시스템의 강인제어를 위한 DNP 제어기 설계)

  • ;趙賢燮
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.187-187
    • /
    • 1999
  • in order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed. Also, the learning architecture to compute inverse kinematic coordinates transformations in the manipulator of auto-equipment system is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulation are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

Multi-Channel Vibrotactile Display for Teleoperated Assembly

  • Thomas Debus;Jang, Tae-Jeong;Pierre Dupont;Robert Howe
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.390-397
    • /
    • 2004
  • This paper presents the design and testing of a multi-channel vibrotactile display. It is composed of a cylindrical handle with four embedded vibrating elements driven by piezoelectric beams. Vibrations are transmitted to the hands through arrays of pins. The device was tested in sensory substitution for conveying force information during a teleoperated peg insertion. Results show that the device is effective in reducing peak forces during the insertion task.

hierarchical Control and Intelligent Scheduling of Flexible Manufacturing Cell (유연 생산셀의 계층적 제어와 지능형 스케쥴)

  • 서기성;이노성;안인석;박승규;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.492-503
    • /
    • 1994
  • In this study, the control and scheduling of the flexible manufacturing cell (FMC) is discussed, which can perform the mixed production and relieve the effect of machine failure. The control of the FMC isvery complex task due to the property of multiple jobs and the dynamically changing states. For effective control of proposed FMC, the hierarchical scheme is introduced and the functions of each levels are defined. Especially for the control functions of shop floor level and cell level, the intelligent scheduler is implemented. To show the efficiency of the intelligent scheduler, the production method fo the existing assembly lines was evaluated and compared with the proposed intelligent FMC method. The results from the production performance show that the proposed method is superior to the existing method in various performance indices.