• 제목/요약/키워드: assembly algorithm

검색결과 376건 처리시간 0.022초

다목적을 갖는 혼합모델 조립라인의 밸런싱과 투입순서를 위한 공생 진화알고리즘 (A Symbiotic Evolutionary Algorithm for Balancing and Sequencing Mixed Model Assembly Lines with Multiple Objectives)

  • 김여근;이상선
    • 한국경영과학회지
    • /
    • 제35권3호
    • /
    • pp.25-43
    • /
    • 2010
  • We consider a multi-objective balancing and sequencing problem in mixed model assembly lines, which is important for an efficient use of the assembly lines. In this paper, we present a neighborhood symbiotic evolutionary algorithm to simultaneously solve the two problems of balancing and model sequencing under multiple objectives. We aim to find a set of well-distributed solutions close to the true Pareto optimal solutions for decision makers. The proposed algorithm has a two-leveled structure. At Level 1, two populations are operated : One consists of individuals each of which represents a partial solution to the balancing problem and the other consists of individuals for the sequencing problem. Level 2, which is an upper level, works one population whose individuals represent the combined entire solutions to the two problems. The process of Level 1 imitates a neighborhood symbiotic evolution and that of Level 2 simulates an endosymbiotic evolution together with an elitist strategy to promote the capability of solution search. The performance of the proposed algorithm is compared with those of the existing algorithms in convergence, diversity and computation time of nondominated solutions. The experimental results show that the proposed algorithm is superior to the compared algorithms in all the three performance measures.

진화알고리즘을 이용한 선취적 다목표 양면조립라인 밸런싱 (Two-Sided Assembly Line Balancing with Preemptive Multiple Goals Using an Evolutionary Algorithm)

  • 송원섭;김여근
    • 한국경영과학회지
    • /
    • 제34권2호
    • /
    • pp.101-111
    • /
    • 2009
  • This paper considers two-sided assembly line balancing with preemptive multiple goals. In the problem, three goals are taken into account in the following priority order : minimizing the number of mated-stations, achieving the goal level of workload smoothness, and maximizing the work relatedness. An evolutionary algorithm is used to solve the multiple goal problems. A new structure is presented in the algorithm, which is helpful to searching the solution satisfying the goals in the order of the priority. The proper evolutionary components such as encoding and decoding method, evaluation scheme, and genetic operators, which are specific to the problem being solved, are designed in order to improve the algorithm's performance. The computational results show that the proposed algorithm is premising in the solution quality.

표면실장기의 조립시간 최소화를 위한 진화 알고리즘 (An Evolutionary Algorithm for Minimizing the Assembly Time of surface Mounting Machines)

  • 이성한;이영대;이원식;이범희
    • 제어로봇시스템학회논문지
    • /
    • 제6권8호
    • /
    • pp.697-702
    • /
    • 2000
  • The paper considers the problem of improving the productivity of surface mounting in the printed circuit board(PCB) assembly line. This problem is generally divided into two problems ; real assignment problem and pick-and -place sequencing problem which are known to have no polynomial time algorithms. In the last ten years algorithm designers have been trying to solve them separately. However they need to be solved jointly because they are highly interrelated. This paper proposes an evolutionary algorithm which can consider the two problems jointly and thus yield a better solution. In order to evaluate the proposed algorithm computer simulation is performed on real-life surface mounting machines. The proposed algorithm is expected to reduce the assembly time of surface mounting machines and thus improve the productivity.

  • PDF

A Modified Heuristic Algorithm for the Mixed Model Assembly Line Balancing

  • 이성열
    • 한국산업정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.59-65
    • /
    • 2010
  • This paper proposes a modified heuristic mixed model assembly line (MMAL) balancing algorithm that provides consistent station assignments on a model by model basis as well as on a station by station. Basically, some of single model line balancing techniques are modified and incorporated to be fit into the MMAL. The proposed algorithm is based on N.T. Thomopoulos' [8] method and supplemented with several well proven single model line balancing techniques proposed in the literature until recently. Hoffman's precedence matrix [2] is used to indicate the ordering relations among tasks. Arcus' Rule IX [1] is applied to generate rapidly a fairly large number of feasible solutions. Consequently, this proposed algorithm reduces the fluctuations in operation times among the models as well as the stations and the balance delays. A numerical example shows that the proposed algorithm can provide a good feasible solution in a relatively short time and generate relatively better solutions comparing to other three existing methods.

학습적 방법에 의한 챔퍼없는 부품의 조립에 관한 연구 (Learning Assembly Strategies for Chamferless Parts)

  • 안두성;김성율;조형석
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.175-181
    • /
    • 1993
  • In this paper, a practical method to generate task strategies applicable to chamferless and high-precision assembly, is proposed. The difficulties in devising reliable assembly strategies result from various forms of uncertainty such as imperfect knowledge on the parts being assembled and functional limitations of the assembly devices. In approach to cope with these problems, the robot is provided with the capability of learning the corrective motion in response to the force signal trrough iterative task execution. The strategy is realized by adopting a learning algorithm and represented in a binary tree type database. To verify the effectiveness of the proposed algorithm, a series of simulations and experiments are carried out under assimilated real production environments. The results show that the sensory signal-to-robot action mapping can be acquired effectively and, consequently, the chamferless assembly can be performed successfully.

  • PDF

자동차 글라스 조립 자동화설비를 위한 프라이머 도포검사 비전시스템 개발 (Primer Coating Inspection System Development for Automotive Windshield Assembly Automation Facilities)

  • 김주영;양순호;김민규
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.124-130
    • /
    • 2023
  • Implementing flexible production systems in domestic and foreign automotive design parts assembly has increased demand for automation and power reduction. Consequently, transition to a hybrid production method is observed where multiple vehicles are assembled in a single assembly line. Multiple robots, 3D vision sensors, mounting positions, and correction software have complex configurations in the automotive glass mounting system. Hence, automation is required owing to significant difficulty in the assembly process of automobile parts. This study presents a primer lighting and inspection algorithm that is robust to the assembly environment of real automotive design parts using high power 'ㄷ'-shaped LED inclined lighting. Furthermore, a 2D camera was developed in the primer coating inspection system-the core technology of the glass mounting system. A primer application demo line applicable to the actual automobile production line was established using the proposed high power lighting and algorithm. Furthermore, application inspection performance was verified using this demo system. Experimental results verified that the performance of the proposed system exceeded the level required to satisfy the automobile requirements.

Heavy-Weight Component First Placement Algorithm for Minimizing Assembly Time of Printed Circuit Board Component Placement Machine

  • Lee, Sang-Un
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권3호
    • /
    • pp.57-64
    • /
    • 2016
  • This paper deals with the PCB assembly time minimization problem that the PAP (pick-and-placement) machine pickup the K-weighted group of N-components, loading, and place into the PCB placement location. This problem considers the rotational turret velocity according to component weight group and moving velocity of distance in two component placement locations in PCB. This paper suggest heavy-weight component group first pick-and-place strategy that the feeder sequence fit to the placement location Hamiltonean cycle sequence. This algorithm applies the quadratic assignment problem (QAP) that considers feeder sequence and location sequence, and the linear assignment problem (LAP) that considers only feeder sequence. The proposed algorithm shorten the assembly time than iATMA for QAP, and same result as iATMA that shorten the assembly time than ATMA.

조립블록 지번할당 알고리즘 개발 : 현대중공업 사례 (JIBUN (location) assignment algorithm for assembly blocks : A case of Hyundai Heavy Industries)

  • 박창규;서준용
    • 산업공학
    • /
    • 제19권2호
    • /
    • pp.160-167
    • /
    • 2006
  • It is a crucial managerial issue how to manage assembly blocks at shipyard. Based on the project experience in Hyundai Heavy Industries, this study points out the difficulties on the block stockyard operations, formalizes the JIBUN (location) assignment problem for assembly blocks, and develops the JIBUN (location) assignment algorithm whose purpose is to reduce the number of unproductive block moves. Through simulation experiments for various situations, this study demonstrates the usefulness of JIBUN (location) assignment algorithm. In addition, this study examines the impacts of block move sequence rules and of block stockyard layouts on the block stockyard operations.

수송알고리즘에 의한 칩마운터의 조립순서계획 (An Assembly Sequence Planning of a Chip Mounter Using Transportation Algorithm)

  • 박태형;김철한
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.836-843
    • /
    • 2000
  • A sequence planning method is proposed to reduce the assembly time of gantey-type chip mounters with single head. The overall path of the chip mounter is divided into forward and backward path, and formulate the optimization problem is formulated as an transpoetation problem and an Euler's tour problem. The transportation alforithm is applied to find optimal backward path, and Euler's tour algorithm used to generate an assembly sequence. Simulation results are presented to verify the usefulness of the proposed method.

  • PDF

에그크레이트(Eggcrate) 격자(Grid)의 내접원 직경 측정을 위한 머신비편 알고리즘 (A Machine Vision Algorithm for Measuring the Diameter of Eggcrate Grid)

  • 김채수;박광수;김우성;황학;이문규
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.85-96
    • /
    • 2000
  • An Eggcrate assembly is an important part to hold and support 16,000 tubes containing hot and contaminated water in the steam generator of nuclear power plant. As a great number of tubes should be inserted into the eggcrate assembly, the dimensions of each eggcrate grid are one of the critical factors to determine the availability of tube insertion. in this paper. we propose a machine vision algorithm for measuring the inner-circle diameter of each eggcrate grid whose shape is not exact quadrangular. The overall procedure of the algorithm is composed of camera calibration, eggcrate image preprocessing, grid height adjustment, and inner-circle diameter estimation. The algorithm is tested on real specimens and the results show that the algorithm works fairly well.

  • PDF