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A Modified Heuristic Algorithm for the

Mixed Model Assembly Line Balancing

Sungyoul Lee
*

Abstract This paper proposes a modified heuristic mixed model assembly line (MMAL)
balancing algorithm that provides consistent station assignments on a model by model basis
as well as on a station by station. Basically, some of single model line balancing techniques
are modified and incorporated to be fit into the MMAL. The proposed algorithm is based on
N.T. Thomopoulos’ [8] method and supplemented with several well‐proven single model line
balancing techniques proposed in the literature until recently. Hoffman's precedence matrix [2]
is used to indicate the ordering relations among tasks. Arcus’ Rule IX [1] is applied to
generate rapidly a fairly large number of feasible solutions. Consequently, this proposed
algorithm reduces the fluctuations in operation times among the models as well as the
stations and the balance delays. A numerical example shows that the proposed algorithm can
provide a good feasible solution in a relatively short time and generate relatively better
solutions comparing to other three existing methods.

Key Words : Mixed model assembly line balancing, Precedence matrix, Arcus’ Rule IX,
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1. Introduction*

With the speedy and various demands of

customers, today’s manufacturers have now rather

a MMAL than a single one. MMAL is known to

be a special case of production lines where various

and different models of the same product are

inter-mixed to be assembled simultaneously on the

same line [3]. The produced items keep changing

from model to model continuously on the line. In

order to reduce inventory cost, the number of

models on the line is usually kept at a minimum

level considering both customers’ satisfaction for

different varieties and the corresponding demands.

In a MMAL balancing, work elements are

assigned to operators on a daily or shift basis
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rather than on a cycle time basis as is often done

in single model lines. Here, general practice is to

distribute evenly the total daily workload to

stations. However, station by station assignments

on individual models are not considered. This may

lead to an uneven work flow along the line for a

particular model.

Therefore, the objective of this study is to

propose a Heuristic MMAL balancing algorithm

that leads to more consistent station assignments

on a model by model basis as well as a station by

station.

Several single model line balancing techniques

are modified and incorporated to be suitable to the

MMAL case. The applied techniques and proposed

balancing procedure are explained in the following

sections. Finally, a case problem already used in

other reference is used here again for the purpose
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of testing the validity and comparing the

performance of the proposed algorithm with others.

2. Mixed Model Assembly Line Balancing

Algorithm

In order to induce a more efficient and simplified

approach while in keeping the ultimate goal to

balance work station times, several suitable

methods among single line balancing techniques

have been incorporated to the basis of N.T.

Thomopoulos’ MMAL balancing method [8].

Hoffman's precedence matrix [2] is used to

indicate the ordering relations among tasks. Arcus’

Rule IX [1] is applied to generate rapidly a fairly

large number of feasible solutions.

2.1 Applied Methods

2.1.1 Determination of the lower and upper

limits of station times

In order to induce even assignments of operation

times through the all work stations, it should be

avoided for a certain work station to occur too

much idle time. A general balancing approach is to

find even work station assignments with a

minimum number of stations. It is to simulate

some assigning process with various cycle times

until even assignments with minimum idle times

have been reached.

In a MMAL, since operation assignments are

done based on the shift time (or daily production

time) rather than a cycle time, a determination of

feasible lower and upper limits of station times

which can be applied equally through the all

stations will be desirable in terms of efficiency and

simplicity. Here, the upper limit (TH) of the station

times equals to the shift time itself. After

obtaining a mean station time (Ta), the lower limit

(TL) can be calculated as Ta minus the difference

between TH and Ta.
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Where, n: the number of work stations.

J: the number of models

K: total number of work elements

Nj: the minimum demand ratios of the model j.

Ti: total times assigned on the i th work station

for a shift time.

          mod
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2.1.2 Determination of a work element

eligible to assign

If more than two work elements are eligible to

be assigned to the station, an element is efficiently

selected according to the sampling method based

on Arcus’ Rule IX. Here, the weighting procedure

of Arcus’ Rule IX is a product of the weights

calculated by the following five Rules: i.e., Rule IX

= Rule I x Rule V x Rule VI x Rule VII x Rule

VIII. Each rule is explained as follows:

Rule I: Weight tasks that fit in proportion to the

work element time.

Rule V: 1 / (total number of unassigned tasks

– 1 – number of all the tasks that

follow the task being considered)

Rule VI: total number of all following tasks + 1

Rule VII: Weight tasks that fit by the sum of

the task and of all following task

times.
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Rule VIII: (total number of following tasks + 1)

/ (number of levels which those

following tasks occupy + 1)

The way of using the Rule IX follows:

First, assign a calculated weight as above to

each of eligible work elements. Secondly, assign

selection probabilities to the work elements in

proportion to the weights. Finally, select a work

element according to the Monte‐Carlo method

based on the generated random number.

2.2 Balancing Procedure

Terminology used here is explained as follows:

(1) Precedence matrix: a matrix that represents

precedence relationship among work

elements. Precedence matrix Y is given

below according to Hoffman’s method [2].

1: If element of row i immediately

Y = precedes the element of column j

0: Otherwise

(2) KODE‐ROW: a row that sums each column

of the precedence matrix.

(3) Standard KODE‐ROW: a row that sums

each column of the initial precedence matrix.

  
  



     

Where, D(i,j) : precedence relations matrix

for a given data

(4) Starting KODE‐ROW i: a KODE‐ROW

that uses to search the first work element

to be assigned in work station i.

(5) Eligible work elements to assign: unassigned

work elements that are eligible to be

possibly assigned to the current work

station. They should obey the precedence

relationship constraints as well as the

remaining station time limits. Here, these are

the work elements that have their element

times less and equal to the remaining station

times among the work elements associated

with the columns in which its KODE‐ROW

is zero.

(6) Iteration limits: a desirable number of

generations of feasible solutions. Normally,

1000 is appropriate.

(7) Modifier (Δi): Model balancing factor.

∆ 
  



       

 



  



        

Where, Pj : a mean work times per work

station on all units of j th model for a shift

time. Pij : sum of work times on all units of

j th model in i th work station for a shift

time.

Among the generated feasible solutions, it

is considered as optimum solution for the

solution to have a minimum Δi.

{Balancing Procedure}

Step 1: Construct a combined precedence matrix

by inputting given data (number of models,

number of stations, shift time, demands, work

element times, and precedence relations) and

then calculate a standard KODE‐ROW.

Step 2: Calculate a mean station time (Ta)

based on the given number of stations and

then calculate desirable lower and upper limits

of the station times. Assign the station

number as 1 and iteration number as 0.

Step 3: Find an eligible work element to be

assigned. Among the work elements where its

KODE‐ROW is zero, find eligible elements

that their sum of element times, T(i) is less

and equal to the remaining station times, TR.

Assign weights to the selected elements

according to the Arcus’ Rule IX and assign

the corresponding selection probabilities to the

elements based on the weights. Here, if there

is no eligible element, then go to Step 6.
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 i  ti1   ti2  ti3  i  ti1   ti2  ti3  i  ti1   ti2  ti3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

2.2  3.1  0.9
3.3  2.3  3.0
2.3  3.2  3.0
2.7  0.0  2.7
3.2  0.8  0.8
1.4  1.0  2.0
0.0  1.3  2.3
1.8  0.0  1.9
3.0  1.2  1.4
1.2  2.3  2.8
2.1  1.3  1.1
0.0  2.0  0.8
1.2  0.0  2.2
0.8  0.0  2.5
1.2  0.0  2.0
0.0  1.8  1.6
1.3  3.1  1.4
2.5  1.6  3.3
2.5  1.8  1.2
0.8  0.6  1.8
0.4  1.6  1.2

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1.2  0.5  1.6
2.5  0.0  3.0
0.0  2.6  1.6
0.7  0.0  0.0
1.4  1.9  3.4
1.8  0.9  0.0
0.0  0.7  2.7
0.0  1.5  0.5
1.5  0.0  0.6
1.5  0.9  0.0
0.0  1.1  2.9
1.1  0.0  3.0
2.5  1.7  0.6
0.9  0.0  1.5
1.0  2.5  0.7
2.6  1.5  1.3
1.8  0.4  0.0
1.8  0.5  0.0
1.1  1.2  1.2
1.4  2.4  3.3
0.0  0.4  0.6

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

1.4  0.8  3.2
0.4  2.0  0.0
0.0  2.6  0.7
2.6  0.0  1.8
0.7  2.1  1.2
1.1  0.9  3.2
0.0  0.8  0.0
0.7  0.5  1.5
2.1  2.9  0.3
0.0  0.0  0.9
1.5  0.0  3.1
0.5  0.9  0.7
1.6  1.5  0.0
2.6  0.0  1.8
0.8  2.1  2.9
2.2  0.7  0.0
1.5  1.3  3.2
3.3  2.9  0.9
0.0  2.6  0.7

total 81.5 74.3 94.5

<Table 1> Work Element Times for the Three Models

However, a starting KODE‐ROW of the first

station always becomes a standard KODE‐

ROW and when selecting the first element to

be assigned in each station, the remaining

station time is TH.

Step 4: Select a work element from the eligible

work elements list by means of Monte‐Carlo

method and then increase the iteration number

by 1. Replace the STIME as sum of T(i)s of

the selected work elements and recalculate the

new remaining TR by the remaining TR

minus T(i) of the selected work element.

Step 5: If a STIME is less than TL, then assign

a random big number M (99999) to the

diagonal element, D(i,i) of the assigned work

element i. Then update a KODE‐ROW as a

new row which is a KODE‐ROW minus the

row on the corresponding precedence matrix of

the assigned work element. If the iteration

number is greater and equal to the IMAX, go

to Step 9 and otherwise, go to Step 3.

Step 6: Replace the STIME of the corresponding

work station as a cumulative sum of work

element times, ΣT(i) up to now and replace

the KODE‐ROW as a starting KODE‐ROW.

Step 7: Calculate the Δi. If it is the first one,

place this as an optimum Δi and otherwise,

compare this with current optimum Δi and if

this is greater than the current optimum, then

go to Step 3. Here, if a final work station is

reached, then go to Step 11.

Step 8: Replace the optimum Δi as the current

Δi and print out the current solutions. Here, if

the Δi is not zero, then go to Step 3.

Step 9: Print the final results considering the

optimum solutions obtained up to now as final

solutions. Increase the station number by 1

and replace the iteration number as 1.

Step 10: Select all the remaining work elements

unassigned until now and then go to Step 6.

Step 11: Calculate the balance delay considering

the optimum solutions obtained up to now as

final solutions.

Step 12: Print the results obtained up to now

and then stop.

3. Case Problem and Comparison Analysis

For the purpose of testing validity of the

proposed system as well as comparing with other

methods, a same case problem which was already

used in Reference [5] has been used again here.

The problem is as follows:

There is a MMAL where three models are

assembled. The total number of work elements is

61. Work element times for the three models and

their combined precedence relationship diagram are

shown on <Table 1> and (Figure 1) respectively.

Seven or eight work stations are desirable and the

minimum production ratios for the three models are

1:2:3. A cycle time for each model in each work

station is given as 13.8.

The Results obtained from the proposed

balancing procedure are shown on <Table 2> with

the ones of the other three methods for the
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(Figure 1) Combined Precedence Relationship Diagram

for the 61 Work Elements

Heuristic 
Methods

Work 
Station 
Number

Assigned Work Elements

 LCR

1
2
3
4
5
6
7
8

39 40 51 28 29 30 31 4
 5 32 34  1  2  3 33 6 18
19 20 24 25 26  7 10
16 13 11 12 35 36 14
15 37 38 41 42 43 44 48 21
22 23 27 47 45 46  8  9 17 52 49
50 53 54 59 60 57 55 58
56 61

 RPWT

1
2
3
4
5
6
7
8

18 19 39 35 20 36 40  4
37 38 41 28 42 29 43 44
30 21 22 24 31  1 23
45 32  2  5 25 47 33 51  6
48 34  3 27 49 50  7 10 13
52 53 54 59 11 57 55 58
60  8 12 56  9 14 17 16 61
26 46 15

 Kim &    
Kwak

1
2
3
4
5
6
7
8

 4  5  6 28 18 19 20  1 21 26
39 24 40 41 29 22 
23 35 51 52 36 37 30 38
42 25 27 31 32 33  2
34  3 43 44 47 48 45 49 50
53 54 55 57 58 59 60  7 10
16 11 13 14  8  9 15 12 17
46 56 61

 Proposed   
Method

1
2
3
4
5
6
7

35  1 51  2 18  3 19  4 20
24 26  5 28 25 21 22
23  6 39  7 10 16  8 11
12 13 14 27  9 17 15 36 37 38
40 41 29 42 43 30 44 31
45 34 48 47 52  3 33 46 49 50
53 54 55 56 57 58 59 60 61

<Table 2> Work Assignments obtained from the 4

Different Methods.

comparison purpose. Here, it is noted that only the

proposed system assigned work elements to 7

stations rather than 8 stations used in others.

<Table 3> shows variances of station times on

each model and total sum of the variances times

the square of production ratios as a measure of

even assignments in station times on each model.

For the comparison purpose, the results from the

other three methods already obtained by Kim &

Kwak are shown on the same table [5]. Here, LCR

stands for Largest Candidate Rule and RPWT for

the Ranked Positional Weight Technique. For more

details about LCR and RPWT, refer to the

reference [5]. In the other three methods, it should

be noted that the variances of the station times

per model and the station times per cycle time

were obtained without including the last station

times. However, the proposed method included the

last station times as well.

From the <Table 3>, it is notable that proposed

system could generate much better results compare

to other three methods in terms of very low

variances in station times for each model. Based

on the variance values of the last two rows in

each method, the proposed method shows the much

smaller values which mean evenly assignments on

both the station by station and the model by

model basis in balancing MMALs.

In other words, we can see that proposed

system could provide even work assignments in

station times per model as well as in total station

times.

4. Conclusion

In this study, an efficient heuristic MMAL

balancing algorithm was proposed. The developed

system could generate a good feasible solution in a

short time which leads to even station by station

assignments on individual models as well. A

numerical example shows that the proposed system
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Heuristic 
Methods

Work 
Station
Number

Model
Tk

1 2 3

LCR

1
2
3
4
5
6
7
8

13.8
12
12
9.1
6.1
13.5
12.1
2.6

11.1
9.7
9.2
4.3

13.7
13.8
9.9
2.6

13.2
13.7
13.7
13.8
13.7
11.6
12.3
 2.5

75.6
72.5
71.5
59.1
74.9
75.9
68.8
15.3

sj
2 5.936 8.880 0.637 29.870

åRj
2sj

2 5.936+8.880x4+0.637x9=47.189

RPWT

1
2
3
4
5
6
7
8

12
6.1
13.2
13.1
8.4
8.1
13.8
 6.8

7.5
11.2
13

13.7
9.1
7.6
8.9
3.3

13.5
13.4
13.3
13.2
13.8
13.7
10.3
3.3

67.5
68.7
79.1
80.1
68

64.4
62.5
23.3

sj
2 8.073 5.431 1.279 40.622

åRj
2sj

2 8.073+5.431x4+1.279x9=41.308

Kim & 
Kwak

1
2
3
4
5
6
7
8

12.6
12.1
11.7
10.1
 5.5
12.9
11.4
 5.2

9.9
10.3
11.3
8.2

12.3
11
8.7
2.6

13.2
12.1
13.1
13.6
13.6
13.5
11.1
 4.3

72
69

73.6
67.3
70.9
75.4
62.1
23.3

sj
2 5.574 1.800 0.764 16.802

åRj
2sj

2 5.574+1.800x4+0.764x9=19.650

Proposed 
Method

1
2
3
4
5
6
7

11.6
11.6
11.7
12.7
11.5
8.4
14

 10.10
10.7
10.5
10.5
10.3
10.2
12

13.5
13.7
13.7
13.4
13.5
13.4
13.3

72.3
74.1
73.8
73.9
72.6
69

77.9

sj
2  2.460  0.356  0.020 6.051

åRj
2sj

2 2.460+0.356x4+0.020x9=4.064

<Table 3> Station Times and Variances per Model

of the 4 Methods

could generate better or as good feasible solutions

as other known methods until now.
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