• Title/Summary/Keyword: asphalt mixtures

Search Result 230, Processing Time 0.022 seconds

Development of a Spray-Injection Patching System and a Field Performance Evaluation of 100% RAP Asphalt Mixtures using a Rapid-Setting Polymer-Modified Asphalt Emulsion (아스팔트 긴급보수용 스프레이 패칭 장비 개발 및 현장 적용성 평가)

  • Han, Soo Hyun;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.77-85
    • /
    • 2018
  • PURPOSES : The purpose of this study was to develop an urgent road-repair system and perform a field applicability test, as well as discover the optimum mix design for machine applications compared to the optimum mix design for lab applications. METHODS : According to reviews of the patent and developed equipment, self-propelled and mix-in-place equipment types are suitable for urgent pavement repair, e.g., potholes and cracks. The machine-application mix design was revised based on the optimum lab-test mix design, and the field application of a spray-injection system was performed on the job site. The mixture from the machine application and lab application was subjected to a wet-track abrasion test and a wheel-tracking test to calibrate the machine application. RESULTS and CONCLUSIONS : This study showed that the binder content could differ for the lab application and the machine application in the same setting. Based on the wet-track abrasion test result, the binder contents of the machine application exceeded the binder contents of the lab application by 1-1.5% on the same setting value. Moreover, the maximum dynamic stability value for the machine application showed 1% lower binder contents than the maximum lab-application value. Collectively, the results of the two different tests showed that the different sizes and operating methods of the machine and lab applications could affect the mix designs. Further studies will be performed to verify the bonding strength and monitor the field application.

Improvement of Marshall Mix Design and Comparative Evaluation with Current Marshall Mix Design Method (마샬 배합설계 방법의 개선과 기존 방법과의 비교 평가)

  • Hwang, Sung-Do;Yoon, An-Sang;Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.13-24
    • /
    • 2004
  • The Marshall mix design method used in Korea, which was described in the design & construction regulation, had been introduced from Japan Highway Cooperation standard guide. Most engineers have thought that it is the major reason that causes pavement distresses. Therefore, there is a need to modify the current Marshall mix design through using the volumetric design concept, which is most widely used in asphalt mix design. The modified mix design determines the preliminary optimum asphalt content at 4% VTM (Voids in Total Mix). If the Marshall properties, which are VFA, VMA, stability, and flow, were satisfied with the requirements, the preliminary optimum asphalt content is determined as the final optimum asphalt content. The modified Marshall mix design considers VMA. while the current Marshall mix design does not consider VMA. By considering the Marshall stability and flow as the criteria instead of design factors, the modified Marshall mix design is able to decrease the errors occurred in Marshall stability test The test was performed to compare the Marshall properties between current and modified Marshall mix design. The left results showed that there was no difference in the Marshall properties, except for VTM. Thus, the modified Marshall mix design can produce the asphalt mixtures with the constant VTM (4%), and it can improve the asphalt mixture quality in Korea.

  • PDF

Behavior of Asphalt Pavement Subjected to a Moving Vehicle I: The Effect of Vehicle Speed, Axle-weight, and Tire Inflation Pressure (이동하중에 의한 시험도로 아스팔트 포장의 거동 분석)

  • Seo, Young Gook;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.831-838
    • /
    • 2006
  • An experimental/analytic study has been conducted to understand the adverse effects of low vehicle speed, high axle load and high tire pressure on the performance of asphalt pavements. Of 33 asphalt sections at KHC test road, two sections having different base layer thickness (180 mm versus 280 mm) are adopted for rollover tests. During the test, a standard three-axle dump truck maintains a steady state condition as moving along the wheel path of a passing lane, and lateral offsets and real travel speed are measured with a laser-based wandering system. Test results suggest that vehicle speed affects both longitudinal and transverse strains at the bottom of asphalt layer (290 mm and 390 mm below the surface), and even slightly influences the measured vertical stresses at the top of subbase and subgrade due to the dynamic effect of rolling vehicle. Since the anisotropic nature of asphalt-aggregate mixtures, the difference between longitudinal and transverse strains appears prominent throughout the measurements. As the thickness of asphalt pavement increases, the measured lateral strains become larger than its corresponding longitudinal strains. Over the limited testing conditions, it is concluded that higher axle weight and higher tire pressures induce more strains and vertical stresses, leading to a premature deterioration of pavements. Finally, a layered elastic analysis overestimates the maximum strains measured under the 1st axle load, while underestimating the maximum vertical stress in both pavement sections.

Statistical Inference for Process Mean of Deformation Strength of Asphalt Mixtures (통계적 근거에 의한 표층 아스팔트 혼합물 변형강도의 배합강도 설정연구)

  • La, Il-Ho;Kim, Jin-C.;Doh, Young-S.;Kim, Kwang-W.
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.127-134
    • /
    • 2009
  • This study was performed to establish the process mean which is statistically satisfying the critical limit of deformation strength $(S_D)$, which is found to reflect rutting characteristics of asphalt mixture relatively well. The process means were determined using the critical $S_D$ values (3MPa for local highway and 4MPa for arterial highways), which were obtained from correlation analysis of APA and $S_D$ test data of actual highway projects, and coefficient of variation of 32 combinations of domestic mixtures. The process means of 3.2 MPa for local highway and 4.25 MPa for arterial highways were suggested when using 3 specimens (diameter of 100mm). However, since these values are based on the loading speed of 30mm/min, the higher values, 3.5 MPa for local highway and 4.5 MPa for arterial highways, were suggested, respectively, if the loading speed of 50mm/min is applied using the old Marshall machine, which should give higher test values.

  • PDF

A Study on Asphalt Paving Filler Development from Industrial By-products and its Characteristics in Construction Site (산업부산물을 활용한 아스팔트 포장용 채움재 개발 및 현장시공 성능평가 연구)

  • Cho, Do-Young;Park, Keun-Bae;Woo, Yang-Yi;Moon, Bo-Kyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.227-234
    • /
    • 2016
  • In this study, asphalt paving filler, which satisfies the KS standards, were prepared from industrial by-products, such as fly ash generated from thermal power plants, cogeneration ash generated from cogeneration plants, and desulfurized gypsum generated from the flue-gas desulfurization process. The properties of the prepared mixed filler and the existing limestone filler were compared through laboratory tests for preparing asphalt mixture using each filler. In addition, asphalt pavement field tests were conducted using the limestone filler and mixed filler. The dynamic stability, Marshall stability, tensile strength ratio, saturation, porosity, and flow value of the asphalt mixtures used in the field test were evaluated, as was done in the laboratory test. The laboratory and field construction test results revealed outstanding tensile strength ratio, Marshall stability and dynamic stability when using the prepared filler than for the existing limestone filler. Through optimization of the mixing design, the possibility of developing fillers, which the characteristics of the existing limestone filler, was confirmed.

Statistical Analysis for Improving Durability of Porous Asphalt Mixtures (다공성 아스팔트혼합물의 내구성 향상을 위한 통계적 분석의 활용)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Han, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.283-290
    • /
    • 2020
  • Porous asphalt pavement is used widely in advanced countries to reduce traffic accidents and noise. On the other hand, it is not applied widely in Korea due to concerns about its durability. This study aims to find a statistical method to improve the durability of porous asphalt pavement. A Cantabro test was selected to test the durability. The Cantabro test was performed on an asphalt mixture made of a binder and aggregate. This test was repeated three times for each of the four groups to obtain the Cantabro loss rate. The average values of each of the four groups satisfied all the reference values. In addition, through an analysis of variance (ANOVA), it was possible to quantitatively classify test groups with differences in durability, thereby finding problems and improving the durability. Furthermore, the Pay Factor method can lead to voluntary improvements in quality, and the Pay factor can be calculated through statistical analysis of limited data. Through the Pay factor, it is possible to induce definite quality improvement of the contractor and continuously improve the durability of the porous asphalt mixture by evaluating the adequacy of the quality standard.

Performance Evaluation of perpetual Asphalt Pavements Using an Accelerated Pavement Tester (포장가속시험기를 이용한 장수명 아스팔프포장의 공용성 평가 연구)

  • Song, Seo-Gyu;Lee, Jung-Hun;Lee, Hyun-Jong;Hwang, Eui-Yoon
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.1-10
    • /
    • 2005
  • In this study, accelerated pavement tester(APT) was performed on long-life asphalt pavements that can save maintenance and user costs by increasing the design life twice longer than conventional asphalt pavements. Basic material testings are first conducted on a high modulus base(HMB) mixture developed in this study. Four different pavement sections including thin and thick conventional and thin and thick HMB courses are constructed to compare the load-carrying capacities and to investigate the fatigue and rutting performances using an accelerated pavement tester. Tensile strain values at the bottom of base courses under the various loading levels are measured. The tensile strain values of the HMB sections are lower than those of the conventional sections. It is observed from the APT performed on the thin pavement sections that no significant cracks are developed up to the 180,000 cycles of a wheel load. In terms of rutting, only 3mm of rutting is developed in the thick HMB section while 5.3mm of rutting is developed in the thick conventional section at the 90,000 cycles of the wheel load. The HMB material developed in this study can be successfully used in the long-life asphalt pavements because of its excellent fatigue and rutting performances. It is estimated from a series of structural analysis that the use of the HMB material instead of the conventional base materials may reduce the asphalt thickness at least 5cm because of its better load-carrying capacity.

  • PDF

Development of Fracture Energy Measurement System of Asphalt Mixture Using Marshall Tester (마샬 안정도시험기를 이용한 아스팔트 혼합물의 파괴에너지 측정시스템 개발)

  • Kim, Boo-Il;Lee, Moon-Sup
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.135-144
    • /
    • 2009
  • The purpose of this study is to develop a simple and rational crack evaluation system using Marshall tester. Fracture energy were used as a parameter to evaluate the crack resistance of asphalt mixtures. Marshall tester basically measures the vertical deformation obtained from the linear variable differential transformer(LVDT) attached on the specimen's exterior, which can cause a measurement error due to the local deformation near the loading head. Therefore, the validity of the measurement system of Marshall tester should be tested to use it in calculation of fracture energy. Two types of indirect tensile strength tests were performed using four types of asphalt mixtures at two temperature conditions. From the tests, it was shown that local deformation near the loading head had not occurred before a specimen was fractured, so that it did not cause the measurement error of fracture energy. And also from the statistic analysis, the coefficient of variation of vertical deformation measurements obtained on specimen's exterior is less than 15%. Thus, vertical deformation measurements obtained on the specimen's exterior can be used in crack evaluation system using Marshall tester.

  • PDF

Effect of Maximum Aggregate, Porosity, and Temperature on Crack Resistance and Moisture Susceptibility of Porous Asphalt Mixtures (최대입경, 공극률, 온도가 다공성 아스팔트 혼합물의 균열저항성 및 수분민감성에 미치는 영향)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Park, Ki-Soo;Yoon, Kang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.611-619
    • /
    • 2021
  • Porous asphalt pavement (PAP) has many functions, such as reducing accidents and decreasing noise. On the other hand, vulnerability is inevitable because PAP contains approximately 20% porosity. This study evaluated the effects of the maximum aggregate size (MAS), temperature, and porosity on the PAP durability. The indirect tensile strength measures durability. This study tested the samples that stayed dry and were moisturized by freezing and thawing for mixtures having the same porosity of 20% and MAS of 13mm, 10mm, and 8mm. The same test was performed on a mixture of 20% and 22% voids made of the same material with a MAS of 10mm. As a result, for 20% porosity, significant differences in the changes in MAS and temperature were found. A clear difference was observed between 8mm and 13mm under dry conditions, but there were no other significant differences in the MAS change. Furthermore, there was a clear difference in temperature for the change in porosity and temperature, but the gap in 2% porosity at 20% did not show a clear difference. Therefore, it is necessary to develop a more durable PAP through quantitative evaluations of the factors affecting the PAP durability.

Evaluation of the Asph81t Mixture Performance with Waste Materials

  • Lee, Kwan-Ho;Lovell, C
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-34
    • /
    • 1996
  • The objective of this paper is to evaluate the asphalt mixture performance with pyrolyzed carbon black(CBP) and air -cooled iron blast furnace slag. Marshall mix design was performed to determine the optimum binder content, The optimum binder content ranged from 6.3 percent to 7.75 percent. Dynamic creep testing was carried out using mixtures at the optimum binder content. Based on the test results, the use of pyrolyzed carbon black and slag in the asphalt pavement showed a positive result, such as the increase of Marshall stability, the decrease of the strain rate and the decrease in the mix stiffness rate at high temperature(5$0^{\circ}C$) and 137.9 kPa confinement. Within the limits of this research. it was concluded that pyrolyzed carbon black as an additive and slag as a coarse aggregate could be used to produce an asphalt paving mixture that has good stability, stiffness, and rutting resistance.

  • PDF