• Title/Summary/Keyword: asperity

Search Result 127, Processing Time 0.03 seconds

Sensitivity and Rejection Capability of Thermal Asperity Induced by Sub-Micron Contamination Particles (미세 입자에 의한 thermal asperity의 민감도 해석 및 감소 방안)

  • 좌성훈
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.6
    • /
    • pp.310-317
    • /
    • 2000
  • With use of (G)MR head, thermal asperity (TA) has been a big concern in drive industry. In this study, we investigated several factors of heads and disks which affects the TA sensitivity of the drive. TA experiments were conducted by introducing the particles on the drives using a particle injection chamber. It was found that the slider ABS shape can help to reduce TA or contamination in the head/media interface. However, TA sensitivity of the drive mainly depend on the intrinsic property of (G)MR sensor. GMR head is much less sensitive to TA compared with MR head. However, in case that the same bias current was applied for both of MR and GMR head, TA sensitivity of GMR head became almost identical to that of MR head. Therefore it was found that the bias current is a dominant factor in determining TA sensitivity of the head. TA sensitivity of different types of disks was also studied. The scratch resistance of the carbon overcoat layer is the one of the main factors which influence TA rejection capability of the disks.

  • PDF

Wear Behaviors of ${Si_3}{N_4}$ under Various Sliding Conditions (미끄럼 환경의 변화에 따른 ${Si_3}{N_4}$의 마멸거동)

  • Lee, Yeong-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1753-1761
    • /
    • 1996
  • The wear behaviors of ${Si_3}{N_4}$ under the different sliding conditions were investigated. The cylinder-on-disc wear tester was used. Using the servo-metor, the sliding speed did ot alternate due to the frictional forces. Threekinds of loads and speeds were selected to watch the variation of the wear rates and the frictional forces. Also three kinds of sliding condition under a constant speed were used to see the effects of the oxidationand the abrasion. The contact pressure was more effective than the repeated cycle on the wear behavior of ${Si_3}{N_4}$. With the low loads, the effect of the asperity-failure was more dominant than that of oxidation and abrasion. As increasing the load, the effects of oxidation and abrasion were increased, but the asperity-failure effects were decreased. The wear particles destroyed the ozide layers formed on sliding surfaces. The wear rate could be decreased due to delaying the oxidation. The frictional power and the wear weight per time were usefuel to see the transition of wear.

Numerical Wear Analysis of a Three-dimensional Rough Surface (수치적 방법을 이용한 3차원 거친 표면의 마모 해석)

  • Kim, Yunji;Suh, Junho;Kim, Bongjun;Yu, Yonghun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.232-243
    • /
    • 2020
  • It is essential to predict the amount of wear and surface parameters for a surface where relative motion occurs. In the asperity-based model for wear prediction, only the average contact pressure can be obtained. Hence, the accuracy of wear analysis is poor. In this study, DC-FFT is used to obtain the pressure of each node, and wear analysis is performed by considering the effect of the pressure gradient. The numerical surface generation method is used to create Gaussian, negatively skewed, and positively skewed surfaces for wear analysis. The spatial and height distributions of each surface are analyzed to confirm the effectiveness of the generated surface. Furthermore, wear analysis is performed using DC-FFT and Archard's wear formula. After analysis, it is confirmed that all peaks are removed and only valleys remain on the surface. The RMS roughness and Sk continue to decrease and Ku increases as the cycle progresses. It is observed that the surface parameters are significantly affected by the radius of curvature of the asperity. This analysis method is more accurate than the existing average wear and truncation models because the change in asperity shape during the wear process is reflected in detail.

A study on lubrication Properties of a Dimple Pattern using an Average Flow Analysis with a Contact Model of Asperities (돌기 접촉 모델과 평균 유동 분석을 이용한 딤플 패턴의 윤활 특성에 관한 연구)

  • Kim, Mi-Ru;Lee, Seung-Jun;Li, Liang;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.41-49
    • /
    • 2016
  • To evaluate lubrication properties by surface roughness under boundary and mixed lubrication, a new approach is suggested by both asperity flow and contact with stochastic characteristics. Many researchers already have studied the effect of surface roughness on flow. But, it has become important to research of the phenomenon of asperities contact in surfaces because the growth of asperities contact area under heavy load conditions. In this paper, flow factors in the average flow model derived by Patir and Cheng were used, and a multi-asperity contact model was included to calculate lubrication properties of a surface with a randomly generated rough surface. A numerical analysis using the average Reynolds equation with both the average flow model and the asperity contact model was conducted, and the results were compared with those from previous research. The results showed that the influence of asperities on lubrication and the friction coefficient changed rapidly on application of contact model.

Variation of Inter-Ring Gas Pressure in Internal Combustion Engine (내연기관 피스톤 링들 사이 가스압력 변동)

  • Yun, J.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.238-249
    • /
    • 1995
  • The gas pressure acting on the rings in internal combustion engine influences the friction and wear characteristics. Inter-ring pressure variation during engine operation results from cylinder gas flow through a piston-ring pack. The flow passages consist of ring end gaps and clearances between the ring and the piston groove. The gas flow in the clearance between the ring and the groove is directly affected by the axial motion of the ring in the groove. In this paper the asperity contact force is newly considered in the prediction of the clearence between the ring and the groove surface. This term must be taken into account physically in case that the clearance get narrow rather than asperity height between the ring and the groove surface. Finally, comparisons of calculated inter-ring gas pressures based on the analytical method are made with the measured ones. The agereement was found to be good below midium engine speed, 3000rpm. In order to obtain accurate analytical results to the extend of high rpm range, it is recommended to include oil ring motion as well as top and second ring in analytical model.

  • PDF

Adhesion and Electrical Performance by Roughness on Semiconductive-Insulation Interface Layer of Silicone Rubber (거칠기에 따른 반도전-절연 계면층에서 접착특성과 절연성능)

  • Lee, Ki-Taek;Hwang, Sun-Mook;Hong, Joo-Il;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.78-81
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. Surface structure and adhesion of semiconductive silicon rubber by surface asperity was obtained from SEM and T-peel test. In addition, ac breakdown test was carried out for elucidating the change of electrical property by roughness treatment. From the results, Adhesive strength of semiconductive-insulation interface was increased with surface asperity. Dielectric breakdown strength by surface asperity decreased than initial Specimen, but increased from Sand Paper #1200. According to the adhesional strength data unevenness and void formed on the silicone rubber interface expand the surface area and result in improvement of adhesion. Before treatment Sand Paper #1200, dielectric breakdown strength was decreased by unevenness and void which are causing to have electric field mitigation small. After the treatment, the effect of adhesion increased dielectric breakdown strength. It is found that ac dielectric breakdown strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints

  • Liu, Xinrong;Liu, Yongquan;Lu, Yuming;Kou, Miaomiao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.407-423
    • /
    • 2020
  • The pre-peak cyclic shear mechanism of two-order asperity degradation of rock joints in the direct shear tests with static constant normal loads (CNL) are investigated using experimental and numerical methods. The laboratory testing rock specimens contains the idealized and regular two-order triangular-shaped asperities, which represent the specific geometrical conditions of natural and irregular waviness and unevenness of rock joint surfaces, in the pre-peak cyclic shear tests. Three different shear failure patterns of two-order triangular-shaped rock joints can be found in the experiments at constant horizontal shear velocity and various static constant normal loads in the direct and pre-peak cyclic shear tests. The discrete element method is adopted to simulate the pre-peak shear failure behaviors of rock joints with two-order triangular-shaped asperities. The rock joint interfaces are simulated using a modified smooth joint model, where microscopic scale slip surfaces are applied at contacts between discrete particles in the upper and lower rock blocks. Comparing the discrete numerical results with the experimental results, the microscopic bond particle model parameters are calibrated. Effects of cyclic shear loading amplitude, static constant normal loads and initial waviness asperity angles on the pre-peak cyclic shear failure behaviors of triangular-shaped rock joints are also numerically investigated.

A Study on the Adhesive Characteristics of Nano Scale Particles Considering Asperity Interaction (거칠기 돌기의 상호작용을 고려한 미세입자의 응착특성에 관한 연구)

  • Lee, Chang-Hun;Lee, Kyong-Hun;Yoon, Jun-Ho;Shin, Young-Eui
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.56-62
    • /
    • 2008
  • In this paper, elastic and plastic adhesion index was very important in deciding adhesive characteristics and varying elastic and plastic index, dimensionless load and pull-off force were analyzed and simulated. Finally, using AFM, experimental surface roughness parameters of substrates and pull-off force between tip and substrates were produced. Using these values, pull-off forces were calculated and were compared with experimental pull-off forces. Through simulation and experiment, it was found that interaction of asperity also had very important influence on adhesive contact.

Contact Pressure Distribution of Pin Bushing Bearings Depending on the Friction Conditions (마찰조건에 따른 핀부싱 베어링의 접촉면압분포에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.255-260
    • /
    • 2007
  • This paper presents the contact pressure distribution of pin bushing bearings for various lubrication friction modes such as oil film and elastohydrodynamic lubrication contacts, a mixed lubrication contact, a boundary contact, and a dry contact. During a sliding contact of a plain bearing, the boundary and dry rubbing contacts are dominated between a piston pin and a pin bushing bearing. This may come from a micro-scale clearance, an explosive impact pressures from the piston head, and an oscillatory motion of a pin bearing. The computed results show that as the oil film parameter $h/{\sigma}$ is increased from the dry rubbing contact to the oil film lubrication friction, the maximum oil film pressure is radically increased due to an increased viscous friction with a thin oil film thickness and the maximum asperity contact pressure is reduced due to a decreased asperity contact of the rubbing surfaces.

finite Element Modeling of a Hemispherical Asperity Adhesively Contacting the Plane Surface of Semi-Infinite Rigid Body (강체평면에 흉착접촉하는 반구헝돌기의 유한요소모델링)

  • Cho, Sung-San;Park, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2436-2441
    • /
    • 2002
  • Finite element technique considering adhesive forces is proposed and applied to analyze the behavior of elastic hemispherical asperity adhesively contacting the plane surface of semi -infinite rigid body. It is demonstrated that the finite element model simulates interfacial phenomena such as jump -to-contact and adhesion hysteresis that cannot be simulated with the currently available adhesive contact continuum models. This simulation aiso provides valuable information on contact pressure, contact region and stress distributions. This technique is anticipated to be utilized in designing a low-adhesion surface profile for MEMS/NEMS applications since various contact geometries can be analyzed with this technique.