• Title/Summary/Keyword: asbestos exposure

Search Result 123, Processing Time 0.028 seconds

Asbestos is Still with Us: Repeat Call for a Universal Ban

  • Ramazzini, Collegium
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.163-169
    • /
    • 2010
  • All forms of asbestos are proven human carcinogens. All forms of asbestos cause malignant mesothelioma, lung, laryngeal, and ovarian cancers, and may cause gastrointestinal and other cancers. No exposure to asbestos is without risk, and there is no safe threshold of exposure to asbestos. Asbestos cancer victims die painful lingering deaths. These deaths are almost entirely preventable. When evidence of the carcinogenicity of asbestos became incontrovertible, concerned parties, including the Collegium Ramazzini, called for a universal ban on the mining, manufacture and use of asbestos in all countries around the world. Asbestos is now banned in 52 countries, and safer products have replaced many materials that once were made with asbestos. Nonetheless, a large number of countries still use, import, and export asbestos and asbestos-containing products. And still today in many countries that have banned other forms of asbestos, the so-called "controlled use" of chrysotile asbestos continues to be permitted, an exemption that has no basis in medical science but rather reflects the political and economic influence of the asbestos mining and manufacturing industry. To protect the health of all people in the world, industrial workers, construction workers, women and children, now and in future generations - the Collegium Ramazzini calls again today on all countries of the world, as we have repeatedly in the past, to join in the international endeavor to ban all forms of asbestos. An international ban on asbestos is urgently needed.

A Review on the Asbestos Substitutes and Health Hazards (석면 대체물질의 종류 및 건강영향 고찰)

  • Park, Seung-Hyun;Ahn, Jungho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.184-195
    • /
    • 2013
  • Objectives: The purpose of this study is to provide information in reference to the health hazards of asbestos substitutes. Methods: This study was conducted by reviewing the literature on the types of asbestos substitutes, product development using alternative materials and the health effects associated with asbestos substitutes. Results: Synthetic or natural fibers such as synthetic vitreous fiber, polyamide, attapulgite, sepiolite and wollastonite are known as asbestos substitutes. According to the patents data of the United States and Europe since the 1970s, many asbestos-free products have been developed in a variety of industries. Health hazards of some asbestos substitutes including synthetic vitreous fibers have been evaluated by many experts, however, additional researches are required to be carried out in the future. Conclusions: Alternatives to asbestos are necessary to develop the asbestos-free products. Health hazards for only several asbestos substitutes have been assessed so far and occupational exposure limit has not been established for many asbestos substitutes yet. Therefore, even though workers are handling asbestos-free products, it is recommended to control the working environment well enough in order to minimize the exposure of workers to dusts or fibers caused during the working process.

Case Report of Asbestos Exposure-Related Lung Carcinoma

  • Chang, Hee-Kyung;Lee, Yong-Hwan;Kiyoshi Sakai;Naomi Hisanaga;Chung, Yong-Hyun;Han, Jeong-Hee;Yu, Il-Je
    • Toxicological Research
    • /
    • v.18 no.1
    • /
    • pp.43-46
    • /
    • 2002
  • A 61 Year-old female patient was hospitalized for lung cancer. Her Occupational history indicated that she had worked for an asbestos company for 9 years from 1976. The histopathology of the lung revealed malignant bronchioalveolar adenocarcima (stage III) in the lower-left lobe, and a lung sample was found to cantion an unusually high level of asbestos, 218.9$\times$$10^6$ asbestos fibers/g of dry lung tissue. The majority of asbestos fibers found was chrusotile. yet no asbestos body was detected. When compared with Korean male (0.3$\times$$10^6$ fibers/g of dry lung tissue) and female subjects (0.15$\times$$10^6$ fibers/g of dry lung tissue) with no known history of occupational asbestos exposure, the apparent cause of the lung cancer in the current patient was occupational exposure to asbestos.

Risk Assessment of Baby Powder Exposure through Inhalation

  • Moon, Min-Chaul;Park, Jung-Duck;Choi, Byung-Soon;Park, So-Young;Kim, Dong-Won;Chung, Yong-Hyun;Hisanaga, Naomi;Yu, Il-Je
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.137-141
    • /
    • 2011
  • This study was conducted to assess the exposure risk through inhalation to baby powder for babies and adults under simulated conditions. Baby powder was applied to a baby doll and the amount of baby powder consumed per application was estimated. The airborne exposure to baby powder during application was then evaluated by sampling the airborne baby powder near the breathing zones of both the baby doll and the person applying the powder (the applicator). The average amount of baby powder consumed was 100 mg/application, and the average exposure concentration of airborne baby powder for the applicator and baby doll was 0.00527 mg/$m^3$ (range 0.00157~0.01579 mg/$m^3$) and 0.02207 mg/$m^3$ (range 0.00780~0.04173 mg/$m^3$), respectively. When compared with the Occupational Exposure Limit of 2 mg/$m^3$ set by the Korean Ministry of Labor and the Threshold Limit Value (TLV) of 2 mg/$m^3$ set by the ACGIH (American Conference of Governmental Industrial Hygienists), the exposure concentrations were much lower. Next, the exposure to asbestos-containing baby powder was estimated and the exposure risk was assessed based on the lung asbestos contents in normal humans. As a result, the estimated lung asbestos content resulting from exposure to asbestos-containing baby powder was found to be much lower than that of a normal Korean with no asbestos-related occupational history.

Melting Characteristics of Asbestos Cement Slate on Basicity Control (염기도 조절에 의한 석면슬레이트 용융특성)

  • Yun, Jinhan;Keel, Sangin;Min, Taijin;Lee, Chungkyu;Jang, Duhun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.159.2-159.2
    • /
    • 2010
  • Asbestos is the collective name for a group of naturally occurring minerals in their fibrous form and hydrous silicates of magnesium and a mineral fiber that has been used commonly in a variety of building construction materials for insulation and as a fire-retardant. Asbestos has been used for a wide range of manufactured goods, because of its fiber strength and heat resistant properties. Nevertheless harmful of asbestos is quite serious. Exposure to airborne friable asbestos may result in a potential health risk because persons breathing the air may breathe in asbestos fibers. Continued exposure can increase the amount of fibers that remain in the lung. Fibers embedded in lung tissue over time may cause serious lung diseases including asbestosis, lung cancer. In this paper, we carried out as fundamental study for dispose of asbestos cement slate safely and perfectly. Melting Temperature of asbestos need to more than $1,520^{\circ}C$ and specially asbestos cement slate need more energy than that of pure asbestos. We need to decrease melting temperature of asbestos cement slate for economical efficiency. To the purpose, glass and bottom ash were chosen as additives for basicity control. we analyzed about properties of asbestos cements slate, melting characteristics on the additives ratio and temperature. We confirmed about harmlessness of melting slag through analysis of scanning electron microscope(SEM) and x-ray diffractometer(XRD).

  • PDF

Characterization of Worker Exposure to Airborne Asbestos in Asbestos Industry (석면취급 사업장 근로자의 석면폭로 특성에 관한 연구)

  • Paik, Nam Won;Lee, Young Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.144-153
    • /
    • 1991
  • This study was conducted to evaluate worker exposure to airborne asbestos fibers by industry, and to evaluate polarized-light microscopy for determining airborne asbestos fibers. A total of 11 plants including asbestos textile, brake-lining manufacturing, slate manufacturing, and automobile maintenance shops were investigated. Rsults of the study are summarized as follows. 1. Worker exposure levels to airborne asbestos fibers were the highest in asbestos textile industry, followed by brake-lining manufacturing, slate manufacturing, and automobile maintenance shops, in order. In asbestos textile industry, large variation of asbestos levels was found by plants. The worst plant indicated airborne fiber concentrations in excess of 10 fibers/cc, however, the best plant showed concentrations within 0.50 fibers/cc. 2. Characterization of airborne fibers by industry indicated that fibers from asbestos textile industry were the longest with the largest aspect ratio. Fibers from automobile maintenance shops were the shortest with the smallest aspect ratio. Based on characteristics of fibers and the highest levels of concentrations, it is concluded that workers in the asbestos textile industry are exposed to the highest risk of producing asbestosis, lung cancer, and mesothelioma. 3. Result s obtained using polarized-light microscopy were $43.7{\pm}12.3%$ of the results obtained using phase contrast microscopy. This may be resulted from the worse resolution of polarized-light microscopy than that of phase contrast microscopy. Based on the results, it is recommended that polarized-light microscopy be used for mainly bulk sample analyses and further study be performed to improve the method for determining airborne samples. However, polarized-light microscopy can be used for determining thick fibers.

  • PDF

Health Effects of Environmental Asbestos Exposure (환경성 석면노출의 건강영향)

  • Kang, Dong-Mug
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.2
    • /
    • pp.71-77
    • /
    • 2009
  • In Korea, asbestos related diseases (ARDs) associated with occupational and environmental asbestos exposures have been reported, and commercial products contaminated with asbestos have gathered huge public attentions recently. Review of previous studies was conducted. Whereas asbestos consumptions among developed countries have decreased, those of Asian countries have increased, which showed typical international transfer of hazardous industries. In Korea residents around former asbestos mines had ARDs, which were reported in many countries such as South Africa, Canada and Australia. ARDs among residents around asbestos factories were found in many countries such as United Kingdom, United States and Italia, and increased relative risks were reported among residents around asbestos textile factories in Korea. Increased air asbestos concentrations by environmental asbestos leakages from factories were correlated with higher malignant mesothelioma incidence rates. When air dispersion model applied, excess incidence rate as far as 2.5 km from a factory were observed. As mesothelioma incidence rate, a representative index of ARD, in Korea has not reported systemically, mandatory reporting system by health personnel who diagnose the disease needs to be introduced. It is hard to conclude that commercials with contaminated asbestos do not have adverse health effects, and further studies are needed to solve these public questions.

A Study on Exposure to Asbestos a Shipbuilding Repair Business (수리조선 작업장에서의 공기중 석면 노출에 관한 연구)

  • Sim, Sang-Hyo;Chung, Hee-Tae;Song, Ki-Min;Kim, Yoon-Shin;Kang, Yong-Seon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.4
    • /
    • pp.279-284
    • /
    • 2008
  • This paper aims to provide basic data for work environment control, prevention of worker exposure to asbestos and improvement of air quality to protect workers ‘health after measuring the level of airborne asbestos and workers' exposure in a shipbuilding repair businesses. For this study, a total of 27 samples were collected from 27 workers who had been exposed to asbestos during engine, piping, boiler and other manufacturing processes in 'A' Shipbuilding Repair Company in Gyeongnam. This research was conducted from Oct. 1 to 30, 2007 and had the following results: The target group (27 workers) consisted of all men with an average age of 35.9 years and 6.6 years of work on average. Among them, fifteen 15 (55.6%) were smokers. In terms of their duties at work, there were 12 plumbing repair engineers (44.4%), 8 boiler repair engineers (29.6%) and 7 engine engineers (25.9%). The geometric mean concentration of airborne asbestos was 0.004 f/cc. A total of 4 samples exceeded the exposure limit. In particular, three exceeded the legal limit by more than double, which means that some workers have been highly exposed to asbestos. In terms of the concentration of asbestos fibres by work process, plumbing repair was the highest (0.0071 f/cc($0.001{\sim}0.57\;f/cc$)) while boiler was the lowest (0.0015 f/cc($0.001{\sim}0.007\;f/cc$)). Based on this study, proper action needs to be taken as soon as possible to protect workers from the threat of asbestos.

Time Trend in Airborne Asbestos Concentrations among Asbestos-containing Material Handling Industries in Korea, 2000 to 2005 (우리나라 석면함유제품 취급 사업장의 공기 중 석면 농도의 시간적 변화)

  • Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.4
    • /
    • pp.454-465
    • /
    • 2016
  • Objectives: The purpose of this study was to evaluate trends in asbestos exposure among asbestos-handling industries from 2000 to 2005. Methods: The data included the number of industries and workers exposed, concentrations of asbestos and the amount exceeded, and the type and size of industry by year. These data were collected by 46 regional employment and labor offices in Korea using work environment monitoring reports. A total of 1,481 samples from 284 industries were extracted from the reports and were analyzed with no data modification. Results: The means of asbestos concentration decreased from $0.84f/cm^3$ to $0.03f/cm^3$ during the period 2000-2005. Among the total of 1,481 samples, 11 samples(0.7%) exceeded the KOEL, and 178 samples(12.0%) were ACGIH TLV. The insulating paper product manufacturing industry was found to have the highest level of asbestos, followed by the fireproofing manufacturing industry, brake lining products manufacturing industry, commutator products manufacturing industries, and construction materials manufacturing industry. The number of asbestos handling industries decreased from 48 industries with 1,155 employees to 37 industries during the period of 2000 to 2005, but the number of asbestos workers expanded to the point that 1,182 employees could be found in 2005. Conclusion: Based on these results, the strengthening of the KOEL and new regulations turned out to help reduce asbestos exposure levels. This study recommends that retrospective exposure to asbestos based on various industry types should be assessed.

Asbestos Exposure and Health Risk Assessment in Asbestos-Containing Buildings (석면함유 건축물의 석면 노출 및 위해성 평가)

  • Jeong, Jae-Won;Kim, Kwang-Su;Cho, Sun-Ja;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1069-1078
    • /
    • 2012
  • This study was performed to evaluate the asbestos exposure levels and to calculate excess lifetime cacer risks(ELCRs) in asbestos-containing buildings for maintenance and management. The range of airborne asbestos concentration of 33 buildings was 0.0018 ~ 0.0126 f/cc and one site exceeded indoor air-quality recommended limit 0.01 f/cc. And ELCRs based on US EPA IRIS(Integrated risk information system) model are 1.5E-06 ~ 3.9E-05 levels, and there was no site showed 1.0E-04 (one person per million) level or more, and 11 sites showed 1.0E-05 (one person per 100,000 people) level or more. To prevent the release of asbestos fibers, it needs operation and maintenance of asbestos-containing building materials, and there are some methods such as removal, repairment, enclosure and encapsulation. In conclusion, a risk-based air action level for asbestos in air is an appropriate metric for asbestos-containing building management.