• Title/Summary/Keyword: artificial upwelling

Search Result 30, Processing Time 0.029 seconds

A study on hydrodynamic characteristics of artificial upwelling structures (인공용승구조물의 수리학적 기능성에 관한 연구)

  • Kim, Hong-Jin;Jeon, Yong-Ho;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.62-67
    • /
    • 2002
  • While upwelling regions account for only 0.1% of the ocean surface, they yield over 40% of world's fish catch. Thus it is vary important making upwelling region by various methods. This study was performed to find out basic hydrodynamic characteristics (function, stability..,) of artificial upwelling structures. The hydrodynamic characteristics of artificial upwelling structures can be summarized as follows: 1) The falling velocity of blocks was effected size($l_B$) of blocks than incident current velocity( $V_0$). 2) The falling horizontal distance was reduced as induce of stratification parameters and block' size. 3) Generation of artificial upwelling current was effected by size of structures and incident current. When stratification parameters was about 3.0 and relative height(hs/h) of structures was about $0.125{\sim}0.15$, stable artificial upwelling current was generated in the back-side of structures.

  • PDF

An Experimental Study for the Falling Test and Upwelling Effect of the Artificial Upwelling Structures in Flow Field (흐름장에서 인공용승구조물의 블록투하 및 용승효과에 관한 실험적 연구)

  • Jeon, Yong-Ho;Lee, Gyung-Sun;Kang, Yoon-Koo;Ryu, Cheong-Ro
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.21-27
    • /
    • 2007
  • The multiplication equipment of marine products with artificial upwelling structures could be useful in the fishing grounds near coastal areas. Artificial upwelling structures could move the inorganic nutrients from the bottom to the surface. Artificial upwelling structures have been used to improve the productivity of fishing grounds. Until now, research on artificial upwelling structures has been related to the distribution of the upwelling region, upwelling structures, and the marine environment. However, little work on the optimum design of the rubber-mound artificial upwelling structures has been done to increase the efficiency of drawing up the inorganic nutrients. This study investigated the optimum cross-section of rubber-mound artificial upwelling structures by means of hydraulic experiments. The hydraulic experiments include the falling test of rubber. Based on the results of the falling test, the relationship between the length of the rubber mound and water velocity, and the relationship between the shape of the rubber and the stratification parameter were established. In addition, the effect of the void ratio of various artificial structures on the stratification parameter was studied. From the experiment, it was found that upwelling could be enhanced when the ratio of structure height to water depth was 0.3 and stratification parameter was 3.0. The upwelling was not improved when the void ratio exceeded 0.43. The optimum size of rubber mounds was determined when the incident velocity was influenced by the mean horizontal length rather than size of block.

Numerical Upwelling Experiment for Optimum Arrangement of Artificial Seamount (용승을 고려한 인공해중산 최적배치 수치실험)

  • Kim, Seong-Hyeon;Kim, Dong-Sun
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.997-1009
    • /
    • 2011
  • In order to estimate volume transport by upwelling for single artificial seamount, same shape and size of artificial seamount already deployed was applied to numerical experiment. The result showed that strong upwelling appeared at front while took place downwelling at rear. The strongest upwelling existed at the top of the artificial seamount. Volume transport by upwelling was computed as 785 m3/s. Column arrangement was applied to two artificial seamount in three cases; case 1) no clearance, case 2) sixty-five meters of clearance as half of artificial seamount's length, and case 3) hundred-thirty meters of clearance as an artificial seamount's length. All cases of column arrangements showed more upwelling volume transport than that of single seamount. Particularly, the case of no clearance calculated as 106% and appeared the most upwelling effect comparing to two other cases. Row arrangement was also applied to two artificial seamount in three cases; case 4) no clearance, case 5) forty meters of clearance as an artificial seamount's width, and case 6) eighty meters of clearance as twice of artificial seamount's width. Upwelling volume transport in case 4 increased 48% than the case of single seamount. Other two cases of 5 and 6 were estimated as 97% increased and more effective than case 4. According to the case experiments, column arrangements show more upwelling volume transport than that of row arrangements. In cases of column arrangements, with decreasing clearance between two seamount, the effect increases while showing maximum value at clearance zero. In cases of row arrangements, on the contrary, with decreasing clearance between two seamount, the effect decreases while showing minimum value at clearance zero. Since simple barotropic condition was considered for this study, further study is necessary by considering baroclinic condition to get close to reality. In conclusion, in deploying artificial seamount, optimal arrangement should be well designed to enhance primary and secondary productivity and to increase the diversity of species as well as reducing time and space.

A Study on Function of Artificial Upwelling Structure of Material (재질에 따른 인공용승구조물의 기능성에 관한 연구)

  • Jeon, Yong-Ho;Kim, Hong-Jin;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.277-282
    • /
    • 2002
  • This study was performed to find out basic function of artificial upwelling structures. Generation of artificial upwelling current was affected by size of structures, incident current and porosity. when stratification parameters was about 3.0, relative height(hs/h) of structures was $0.125{\sim}0.15$, stable artificial upwelling current was generated in the back-side of structures. when porosity is lower than 50%, the effect of artificial upwelling structure was to be better than little by little.

  • PDF

A Study on Characteristic of Three-Dimensional Flow around the Artificial Upwelling Structures (인공용승구조물 주변 흐름의 3차원 특성에 관한 연구)

  • Jeon, Yong-Ho;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.290-293
    • /
    • 2006
  • From the hydraulic experiment, it was concluded that upwelling could be enhanced when the relative structure height (the ratio of structure height to water depth) was 0.3 and stratification parameter was 3.0. In addition, the optimum size of rubbers was determined that the effect of the mean horizontal length of block was affected incident velocity than size of block. In the numerical experiment, the relation between the shape of rubber and stratification parameter was verified, ana the hydraulic characteristics of 3-D flow field around the artificial structures were investigated. Phenomena of flow field around the artificial upwelling structures corresponded with the results of hydraulic experiment. The position with maximum velocity in artificial upwelling structure was the center of top of its front side and the slip stream occurred at the inside and behind-bottom of artificial upwelling structures. The velocity of slip stream and early amplitude of velocity were higher in the inside than the behind-bottom.

  • PDF

Variation of Physical Environment near the Artificial Upwelling Structure during the Summer (하계 인공용승구조물 주변해역의 물리환경변화)

  • Seo, Ho-San;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.372-380
    • /
    • 2015
  • In order to study the characteristics of physical environment in water column around the artificial upwelling structure, CTD and currents measurements were carried out along line observations. Before installation of artificial upwelling structure was installed, the stratification of water column existed 30m in water depth. After installation of artificial upwelling structure, however, stratification formation depth and strength changed depending on currents directions. It seems that the change of stratification has a close relation with upwelling of lower temperature water. After installing the artificial upwelling structure, the distributions of vertical flows were analyzed. Local upwelling and downwelling flows showed a distinct time and spacial changes. Local upwelling flows caused by artificial upwelling structure appeared 100 times larger than coastal upwelling in the South-East Sea of Korea. Upwelling flows generated by the artificial structure raised the high concentration of nutrients to upper layer from lower layer breaking stratification in the summer. Thus, upwelling structure plays an important role for vertical water circulation improving the food environments by increasing primary production.

Flow Characteristics of the Artificial Upwelling Structure by Porosity Change (공극률 변화에 따른 인공용승류 특성)

  • Lee, Hwang Ki;Kim, Young Min;Kim, Jong Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.100-106
    • /
    • 2017
  • Artificial upwelling structure has been set up in sea mount. Bottom water can upwelling euphotic zone. Plentiful nutrient included in bottom water could not only enhance primary production but also expect food chain reaction and gathering fish. This study explain flowing features subject to porosity changes according to the material and shape of artificial upwelling structure. As a result, the upward flux is getting decreased while the porosity is increasing. And it figured out when the upward flux was decreased, the downward flux was also decreased. Futhermore, it was confirmed that the best efficiency of upwelling flux was shown up when the porosity was 10% according to the volume of artificial upwelling structure in case of 20% of porosity, it also has a good efficiency in comparison with impermeable artificial upwelling structure. Therefore, to build the artificial upwelling structure, It is encouraged to design it less than 20% of porosity for the best performance.

Characteristics of Oceanographic Conditions in an Area Suitable for the Construction of Artificial Upwelling (인공 용승 구조물 설치에 적합한 해역의 해양환경 특성)

  • Cho Kyu-Dae;KIM Dong-Sun;PARK Sung-Eun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.2
    • /
    • pp.187-192
    • /
    • 2003
  • To evaluate the oceanographic conditions for the artificial upwelling we measured vertical stratification coefficients, current speed distribution and grain size distribution of bottom sediment in the vicinity of Gukdo and Somaemuldo near Geojedo. There were a strong stratification between surface and bottom layers in summer, the stratification was weak from autumn to winter, and the water was well mixed during winter. In summer nutrient concentration of the bottom layer was 4 times higher than that of the surface layer. Underwater currents were strong in the bottom layer. We conclude that the oceanographic conditions in the area will meet the basic requirement for the construction of artificial upwelling.

Flow Characteristic of Artificial Upwelling by CFD (CFD를 이용한 인공용승류 특성 연구)

  • Lee, Hwang Ki;Kim, Jongkyu;Lee, Moon Ock;Kim, Hyeon-Ju;Otake, Shinya
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.419-423
    • /
    • 2015
  • The flowing caused by artificial upwelling structure occurs ascending water flowing and vortex of rear side. In this moment, plentiful nutrient in the bottom water moves to the surface of the water and makes those plankton and fishing ecology promoted so that the fishing productivity can be enhanced. In this study, the changes of the upwelling flowing is included in consideration of the conditions of stratification by using CFD. In the conclusion, the closer upwelling effect is from the artificial upwelling structure, the better effectiveness comes out. Regardless of the conditions of stratification, only the upwelling feature from the bottom to the surface was shown up. But considering the conditions of stratification, the repeated flowing feature between upwelling and downwelling was verified.

Variation of Current by the Building of Artificial Upwelling Structure(II) (인공용승구조물 설치에 의한 유동변화(II))

  • Hwang, Suk-Bum;Kim, Dong-Sun;Bae, Sang-Wan;Kheawwongjan, Apitha
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.9-14
    • /
    • 2007
  • To illusσ'ate the variation of current around artificial upwelling structure which is located in the South sea of Korea, current measurements using ADCP (Acoustic Doppler Current Profiler) during neap and spring tides were carried out on 27th July(summer), 14th October and 30th November(Autumn), 2006. Current after the set up of artificial upwelling structure were shown different in the upper and lower layer, the boundary between the upper and lower layer was at $27{\sim}30m$ depth in summer. And the boundary layer was formed structure of three layer in Autumn. Upwelling and downwelling flow were occurred around the seamount, and these vertical flows were connected from surface to bottom The distribution of vertical shear and relative vorticity support the vertical flow around the seamount. The strength of vertical shear was higher and the direction of relative vorticity was anticlockwise (+) around the upwelling area.

  • PDF