• Title/Summary/Keyword: artificial substrate

Search Result 194, Processing Time 0.028 seconds

Research on Process Technology of Molded Bridge Die on Substrate (MBoS) for Advanced Package (Advanced Package용 Molded Bridge Die on Substrate(MBoS) 공정 기술 연구)

  • Jaeyoung Jeon;Donggyu Kim;Wonseok Choi;Yonggyu Jang;Sanggyu Jang;Yong-Nam Koh
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.16-22
    • /
    • 2024
  • With advances of artificial intelligence (AI) technology, the demand is increasing for high-end semiconductors in various places such as data centers. In order to improve the performance of semiconductors, reducing the pitch of patterns and increasing density of I/Os are required. For this issue, 2.5dimension(D) packaging is gaining attention as a promising solution. The core technologies used in 2.5D packaging include microbump, interposer, and bridge die. These technologies enable the implementation of a larger number of I/Os than conventional methods, enabling a large amount of information to be transmitted and received simultaneously. This paper proposes the Molded Bridge die on Substrate (MBoS) process technology, which combines molding and Redistribution Layer (RDL) processes. The proposed MBoS technology is expected to contribute to the popularization of next-generation packaging technology due to its easy adaption and wide application areas.

A Study on the Tetrahedral Amorphous Carbon (ta-C) Coating on Medical Polymer Materials for 3D Printing Artificial Teeth (의료용 폴리머 소재를 활용한 3D 프린팅 인공치아용 사면체 비정질 카본 코팅 기술 연구)

  • Jang, Young-Jun;Kim, Jongkuk;Shin, Chang-Hee;Yu, Sung-Mi
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.255-260
    • /
    • 2022
  • This research presents tetrahedral amorphous (ta-C) coating on the artificial tooth for improving the durability and functionality (esthtics, foreign body of tooth) by filtered cathodic vacuum arc (FCVA). A differentiated coating method is required for a ta-C coating on polymer owing to the low melting point of the polymer, inter-facial adhesion, low friction, and non-conductivity. Herein, ta-C coating is applied below 50℃, and the potential difference of the carbon plasma drawn to the substrate was controlled by applying a positive duct bias voltage without using a substrate bias voltage. Consequently, the ta-C coating with a thickness of 70nm using the duct bias condition of 20V with the highest plasma intensity satisfies the esthetics of the artificial tooth and had a 5B level of inter-facial adhesion. In addition, the composite hardness of ta-C/polymer is 380 MPa, and correlations with esthetics, sp3 bonding, and mechanical properties. The friction coefficient (CoF) of the ta-C coating in a water-lubricated environment is 0.07, showing a six-fold reduction in CoF compared with that of a polymer.

Variations of Size and Density of Sea Cucumber (Stichopus japonicus) Released to the Habitat Conditions (서식 환경에 따른 방류 돌기해삼(Stichopus japonicus)의 크기 및 서식밀도 변화)

  • Lee, Jin Wang;Gil, Hyun Woo;Lee, Do Hyeon;Kim, Ju Kyeong;Hur, Jun Wook
    • Ocean and Polar Research
    • /
    • v.40 no.2
    • /
    • pp.69-75
    • /
    • 2018
  • We investigated the effects of environmental variations on the growth and survival rate of Stichopus japonicus to determine the optimum environmental conditions for its growth. Literature studies and a 12 month-long diver survey were carried out to understand the habitat, ecology and size of the surveyed area. Based on the collected data, we suggested optimum habitat conditions for releasing S. japonicus. Experiments on releasing S. japonicus were conducted in the breakwater of the Hwagye fishing cooperative in Hwagey-ri, Namhae-un, Gyeongsangnam-do, Korea. To implement the experiments, we divided the surveyed area into 4 sub-areas with different characteristics: (1) sand and silt zone; (2) artificial sea cucumber bank zone; (3) artificial rock bank zone; and (4) marine algae zone. The experiment lasted for 12 months. We released 32,000 sea cucumbers over $120m^2$ of each of the sand and silt zone, artificial rock bank zone and marine algae zone and released 6,000 sea cucumbers over $120m^2$ of the artificial sea cucumber bank zone. The average density of the released sea cucumbers from day 30 to day 360 after the releasing was conducted was the highest in the artificial sea cucumber bank zone ($23.7animal/m^2$), which was followed by artificial rock bank zone ($2.0animal/m^2$), marine algae zone ($1.9animal/m^2$) and sand and silt zone ($0.8animal/m^2$). The analysis on growth showed that the initial average weight of 2.3 g increased on day 360 after the releasing to 12.5 g in the artificial sea cucumber rank zone, 20.2 g in the sand and silt zone, 23.3 g in the artificial rock bank zone and 22.9 g in the marine algae zone. Results from the experiment along with the literature analysis suggest the following optimum habitat conditions: $10-15^{\circ}C$ water temperature; 28-34 psu salinity; 5-10 m water depth; 0.2-0.5 m/s velocity; rock, stone and muddy sand as substrate; and less than 20% mud in the substrate.

Graphene Field-effect Transistors on Flexible Substrates

  • So, Hye-Mi;Kwon, Jin-Hyeong;Chang, Won-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.578-578
    • /
    • 2012
  • Graphene, a flat one-atom-thick two-dimensional layer of carbon atoms, is considered to be a promising candidate for nanoelectronics due to its exceptional electronic properties. Most of all, future nanoelectronics such as flexible displays and artificial electronic skins require low cost manufacturing process on flexible substrate to be integrated with high resolutions on large area. The solution based printing process can be applicable on plastic substrate at low temperature and also adequate for fabrication of electronics on large-area. The combination of printed electronics and graphene has allowed for the development of a variety of flexible electronic devices. As the first step of the study, we prepared the gate electrodes by printing onto the gate dielectric layer on PET substrate. We showed the performance of graphene field-effect transistor with electrohydrodynamic (EHD) inkjet-printed Ag gate electrodes.

  • PDF

Monitoring on the Soils and Plant Growth in Modular Sloped Rooftop Greening System (모듈형 경사지붕 녹화시스템의 토양과 식물생육 모니터링)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.5
    • /
    • pp.53-67
    • /
    • 2011
  • The major objective of this study was to quantify the effects of substrate depth and substrate composition on the development of sedum etc., in a sloped rooftop (6 : 12 pitch) environment during a 4-year period. The experiment was conducted from 2006 October to 2010 December under several conditions without soil erosion control : two substrate depth (5cm, 10cm), four substrate composition (A5N3C2, A3N3C4, A6C4, G5L3C2: A: artificial lightweight soil, N : natural soil, G : granite decomposed soil, C : leave composite, L : loess), four sloped roof direction ($E40^{\circ}W$, $W40^{\circ}N$, $S40^{\circ}W$, $N40^{\circ}E$). In this experiment 4 sedum etc., were used: Sedum sarmentosum, Sedum kamtschaticum, Sedum rupestre, Sedum telephium, flowering herbs (mixed seed : Taraxacum platycarpum, Lotus corniculatus, Aster yomena, Aster koraiensis), western grasses (mixed seed : Tall fescue, Creeping redfescue, Bermuda grass, Perennial ryegrass). The establishment factor had two levels : succulent shoot establishment (sedum), seeding (flowering herbs, western grasses). 1. Enkamat, as it bring about top soil exfoliation, was unsuitable material for soil erosion control. 2. Sedum species exhibited greater growth at a substrate depth of 10cm relative to 5cm. All flowering herbs and western grasses established only at a substrate depth of 5cm were died. A substrate depth of 5cm was not suited in sloped rooftop greening without maintenance. If additional soil erosion control will be supplemented, a substrate depth of 10cm in sloped rooftop greening without maintenance was considered suitable. 3. For all substrate depth and composition, the most abundant species was Sedum kamtschaticum. The percentage of surviving Sedum kamtschaticum was 73.4% at a substrate depth of 10cm in autumn 2007 one year after the roof vegetation had been established. But the percentage of surviving other sedum were 33.3%~51.9%, therefor mulching for soil erosion control was essential after rooftop establishment in extensive sloped roof greening was proved. To raise the ratio of plant survival, complete establishment of plant root at substrate was considered essential before rooftop establishment. 4. There was a significant interaction between biomass and substrate moisture content. There were also a significant difference of substrate moisture and erosion among substrate composition. The moisture content of A6C4 was highest, the resistance to erosion of A5N3C2 was highest among substrate composition. The biomass of plants were not significantly higher in A5N3C2 and A6C4 relative to A3N3C4 and G5L3C2, For substrate moisture and erosion resistance, A5N3C2 and A6C4 were considered suitable in sloped rooftop greening without maintenance. 5. There were significant difference among roof slope direction on the substrate moisture. Especially, the substrate moisture content of $S40^{\circ}W$ was lower relative to that of $N40^{\circ}E$, that guessed by solar radiation and erosion.

Growth Responses of Tomato and Cucumber Plug-seedlings Grown for the Paper-sludge Substrates (제지슬러지를 이용한 인공상토가 토마토와 오이 플러그묘의 생육에 미치는 영향)

  • Jeong, Sung-Woo;Cha, Seon-Wha;Song, Dae-Bin;Huh, Moo-Ryong
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.9-14
    • /
    • 2010
  • The present study was performed to identify the possibility of the disused paper-sludge to substitute an substrate for nursery plants. Tosilee substrate as control, paper-sludge and tosilee substrate (1:1, v:v), and paper sludge substate were used in this experiment. After harvesting tomato seedlings, there were no significant differences in growth parameters such as plant height, root length, and fresh and dry weight grown for tosilee substrate, and paper-sludge and tosilee mixture substrate. However, the seedlings grown for paper-sludge substrate alone were extremely depressed. These growth pattern was followed by cucumber seedlings. As the result of this experiment, we suggest that it must need to stabilize the pH and EC, and Zn concentration in paper-sludge for increasing its material for substrate.

Endothelial Cell Seeding Onto the Extracellular Matrix of Fibroblasts for the Developement of Small Diameter Polyurethane Vessel (소구경 폴리우레탄 인공혈관의 개발을 위한 세포외기질위의 혈관내피세포 배양)

  • 박동국;이윤신
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • A variety of experiments of endothelial cell seeding onto artificial vessels have been performed. To improve endothelialization, one or two components of the extracellular matrix (ECM) have been used as an underlying matrix. In this study, the whole ECM excreted from fibroblasts was used as an underlying matrix. Fetal human fibroblasts were cultured on a polyurethane (PU) sheet. After a conflu; ence was attained, the cytoskeleton and the nuclei of the fibroblast were destroyed using Triton-X. Mitomycin, or irradiation. Omental microvascular endothelial cells from adult human were seeded onto various substrates. After 12 days in culture, the cells were counted. It was observed that the ECM treated by irradiation had the highest cell number. In addition, the cells on this substrate exhibited the most typical endothelial cell morphology. For preliminary animal experiments the PU vessels (inner diameter, 1.5mm) coated with ECM were implanted in the infrarena] abdominal aorta of rat. After the vessels had been implanted for 5 weeks, it was found that the surface of the PU vessels was completely covered with endothelia] cells. In conclusion, we can state that the fibroblast-derived whole ECM makes a better underlying substrate for the endothelialization of small diameter artificial vessels.

  • PDF

A Study on Plasma Sprayed Porous Super Austenitic Stainless Steel Coating for Improvement of Bone Ingrowth (Bone ingrowth 향상을 위해 플라즈마 용사된 초내식성 오스테나이트 스테인리스강의 다공성 코팅층에 대한 연구)

  • 오근택;박용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 1996
  • The cementless fixation of bone ingrowth by porous coatings on artificial hip joint prostheses are replacing polymethylmethacrylate(PMMA) bone cement fixations. However, the major interests in the field of porous metal coating are environmental corrosivity accelerated by metal ion release, deterioration in the mechanical property of the coating, and the mechanical failure of the coatings as well as the substrate. Therefore, the selection of right materials for coatings and the development of porous coating techniques must be accomplished. Because of the existing problems in Ti and Ti alloys which are used extensively, this study is focused on the plasma spraying technique for coating on super stainless steel substrate. In order to determine the optimum conditions which satisfy the requirement for the porous coatings, under the plasma spraying, we selected the experimental parameters which extensively influenced on the characteristics of the coating through the pre-examination. Spray distance has been selected among 120, 160, and 200mm and primary gas flow rate among 70, 100, and 130 SCFH. Current and secondary gas($H_2$) flow rate was fixed at 400A, and 15 SCFH respectively. To understand the characteristics of the coatings, surface morphology, cross-sectional micro-structure, surface roughness, residual stress, and corrosion resistance were elucidated and the best conditions for the bone ingrowth improvement on artificial hip joint prostheses were found.

  • PDF

Design of Miniaturized Wilkinson Power Divider Using Substrate Integrated Artificial Dielectric (기판적층형 가유전체를 이용한 소형화된 윌킨슨 전력분배기 설계)

  • Koo, Ja-Kyung;Lim, Jong-Sik;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1542-1548
    • /
    • 2009
  • This paper describes a size-reduced Wilkinson power divider using substrate integrated artificial dielectric(SIAD). SIAD transmission lines have increased effective refractive index, so the line width and length are reduced from those of standard transmission lines. Therefore the "size-reduction effect" is achieved if SIAD lines are applied to high frequency circuits. An efficient simulation method is proposed for SIAD lines which have an enormous number of via-holes. A 2GHz Wilkinson power divider is designed and measured using SIAD transmission line as an example of application. The size of the fabricated divider is reduced by 32% due to the increased effective refractive index of SIAD, while the performances are maintained similarly.

Performance analysis of bone scaffolds with carbon nanotubes, barium titanate particles, hydroxyapatite and polycaprolactone

  • Osfooria, Ali;Selahi, Ehsan
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.4 no.1
    • /
    • pp.33-44
    • /
    • 2019
  • This paper presents a novel structural composition for artificial bone scaffolds with an appropriate biocompatibility and biodegradability capability. To achieve this aim, carbon nanotubes, due to their prominent mechanical properties, high biocompatibility with the body and its structural similarities with the natural bone structure are selected in component of the artificial bone structure. Also, according to the piezoelectric properties of natural bone tissue, the barium titanate, which is one of the biocompatible material with body and has piezoelectric property, is used to create self-healing ability. Furthermore, due to the fact that, most of the bone tissue is consists of hydroxyapatite, this material is also added to the artificial bone structure. Finally, polycaprolactone is used in synthetic bone composition as a proper substrate for bone growth and repair. To demonstrate, performance of the presented composition, the mechanical behaviour of the bone scaffold is simulated using ANSYS Workbench software and three dimensional finite element modelling. The obtained results are compared with mechanical behaviour of the natural bone and the previous bone scaffold compositions. The results indicated that, the modulus of elasticity, strength and toughness of the proposed composition of bone scaffold is very close to the natural bone behaviour with respect to the previous bone scaffold compositions and this composition can be employed as an appropriate replacement for bone implants.