• Title/Summary/Keyword: artificial soil

Search Result 883, Processing Time 0.029 seconds

A Comparative Study on the Costs of Structural Materials Based on Different Types of Soil Load on Artificial Ground (인공지반에서 토양하중에 따른 건축구조물 골조원가의 비교연구)

  • 김도경;황지환
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.6
    • /
    • pp.72-81
    • /
    • 2002
  • The purpose of this study is to determine the impact of the soil load for artificial ground on a building's structural expenses. Three types of soil - 100% soil, soil mixed with 50% perlite, and 100% artificial soil - were used for this study. A one story concrete steel building specific to each soil load was designed, and then, the cost of steel and concrete used for the design was estimated. As the result of this study, the structural expenses in the case of 5:5 mixed soil can be reduced about 17% compare with 100% soil. Using artificial soil, the structural expenses can be cut about 32% compare to 100% soil and about 12% less when 5:5 mixed soil is used. However, considering total expense which includes the structural expense and soil expense, the expense of 5:5 mixed soil have an increase 25% compared with 100% soil. In the artificial soil, the total expense is 45% more expensive than 100% soil and 17% higher when 5:5 mixed soil is used because of the high unit price of artificial soil. This study expected substantial savings in structural cost as the soil-load was lightened. But, savings were significantly reduced because the unit price of the artificial soil is much more expensive than the price of the natural one. Therefore, further research on methods of reducing the unit price of the artificial soil should be conducted in order to extend green space on to artificial ground.

Feasibility Study of Artificial Soil Production with Sludge and Utilization for Agriculture (슬러지를 이용한 인공토양 생산 및 농자재화 가능성 연구)

  • 김선주;윤춘경;이남출
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.5
    • /
    • pp.64-70
    • /
    • 1997
  • Sludge is generated in the process of water and wastewater treatment, and it has been causing various problems environmentally and economically. The firing technology in pottery industry was applied to the sludge treatment, and the final product was called artificial soil. For the production of artificial soil, lime and chabazite was used as additive, and the mixed material was thermally treated in the firing kiln at $300^{\circ}$ temperature for about 15 minutes. The physico-chemical characteristics of the artificial soil was analyzed and it showed that the artificial soil could be used as a soil conditioner for farmland. The concentrations of the toxic heavy metals in the artificial soil were lower than those in the soil quality standard for farmland. It was high in permeability, total nitrogen and total phosphorous concentrations and surface area of the artificial soil compared to the common field soil. Preliminary cost analysis showed that the sludge treatment cost for artificial soil was less than the disposal cost in the current landfill disposal method. This study illustrated that the artificial soil production process can be a feasible alternative for sludge treatment, and produced artificial soil may he applied to farmland without causing significant adverse effect. Further study is recommended for practical application of the system and verification of the longterm effect of the artificial soil on farmland.

  • PDF

Characteristics of artificial Soils Used alone or in a Blend with Field Soil for the Greening of Artificial Ground (인공지반의 녹화를 위해서 단용 또는 노지토양과 혼합하여 이용되는 인공토양의 특성)

  • 허근영;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.28-38
    • /
    • 2000
  • The aim of this study is evaluate artificial soils which are used alone or in a blend with field soil for the greening of artificial ground. To achieve these, determination of physicochemical properties was made in four artificial media[Perlite small grain(PSG), perlite large grain(PLG), crushed porous glass+bark(AS), crushed porous glass(CPG)] used alone and/or in a blend with field soil, then evaluation of their effect on th plant growth of Ligustrum obtusifolium and Syringa vulgaris were conducted. In bulk density of root media at field capacity and the saturated hydraulic conductivity, LG and AS showed good performance. But, PLG was though to be unsuitable as artificial soil when used alone because of poor plant growth. PLG, AS, and CPG were thought to be good when it is used in a blend with field soil. But, PSG was thought to be unsuitable. In the result, PSG is recommended as artificial soil which is used alone for greening of artificial ground. PLG is recommended as artificial soil which is used in a blend with field soil. AS is recommended as artificial soil which is used alone and in a blend with field soil. Thought CPG+field soil(v/v, 1:1) might be undesirable in consideration of the chemical properties in six months after planting, it was thought to be superior to th other treatments in the plant growth. CPG can be used as artificial soil which is used in a blend with field soil. Follow-up studies are being conducted to investigate their effects on the plant growth of the other plants and the practical use of them in artificial grounds.

  • PDF

Changes in the Physiochemical Characteristics of Artificial Soil after Rooftop Planting (옥상녹화 후 인공토양의 이화학적 특성 변화)

  • 안원용;김동엽
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.6
    • /
    • pp.77-83
    • /
    • 2001
  • The purpose of this study is to provide the fundamental material and information for the plant maintenance after rooftop planting through physiochemical characteristics. The characteristics of artificial soils after rooftop planting from 1993 to 1999 was investigated. Fourteen investigation areas were selected from 4 cities(2 areas selected by each year). The analysis of the circumstances of the areas, the physical characteristics, and the chemical characteristics of the soil were conducted. The artificial soil pH ranged 5.26∼7.40 showing that after construction the soil pH tended to decrease. The soil bulk density of the site was lowest in 1999, 0.15g/㎤, and used to increase toward 1993. We found the fact that the soil bulk density increased gradually after rooftop application . The coefficients of permeability of the soils range from 0.016 to 0.052 cm/sec, which seemed to be in good permeability level. The artificial soils had relatively high water moisture capacity of 62.69∼71.36%. The soil organic matter content of the artificial soils ranged from 0.43 to 1.34%. The exchangeable caution concentration in the artificial soil ranged, Na, 2.36∼4.71mg·{TEX}$kg^{-1}${/TEX}, Mg 0.88∼2.84mg·{TEX}$kg^{-1}${/TEX},K 2.97∼9.61 mg·{TEX}$kg^{-1}${/TEX}, and Ca 9.39∼28.23 mg·{TEX}$kg^{-1}${/TEX}. The amount of total N ranged from 0.003 to 0.286% in study sites. Soil chemical properties varied year to year and showed little tend. The research results showed that some characteristics of the artificial soil were changed after rooftop planting, i.e., soil pH and soil bulk density. Soil bulk density had a negative relationship with the coefficient of permeability, showing that the drainage condition might be limited after some period. This study suggests that a diversity of the research in the changes of the plant growth basis on the areas after construction.

  • PDF

Coal Bottom Ash Application on Park Site Soil and Its Impacts on Turfgrass Growth and Soil Quality

  • Oh, Se Jin;Kim, Yong Hyok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • Bottom ash (BA) has different macro- and micronutrients such as B, Mo, Fe, Ca, and Mg, providing useful resources for plant growth and soil quality. The objective of this study was to evaluate the applicability of artificial top-soil treated with BA in park area as a vegetation base material, especially for turfgrass growth. Collected BA was mixed with peat moss and clay at the ratio of 70:10:20 (w/w). In order to evaluate the park quality and turfgrass growth in park area, the artificial soil was applied with BA along with the control or without BA. Result showed that exchangeable K and P were increased by $11.4mg\;kg^{-1}$ and $163mg\;kg^{-1}$, respectively, compared to the control soil when the artificial soil was treated with BA. Microbial population and enzyme activity (Acid-phosphatase, APA) in artificial soil having BA also increased as 2 times and 10%, respectively, compared to the control soil. Comparing turfgrass growth and yield between general soil and artificial soil, about 2 times higher plant yield (fresh weight) was observed as artificial soil was applied comparing to general soil. Furthermore, nutrient concentration in turfgrass was averaged as 0.440% for $P_2O_5$, 0.456% for CaO, 1.198% for $K_2O$ and 0.188% for MgO that all values are higher than general soil (0.323% for $P_2O_5$, 0.416% for CaO, 0.610% for $K_2O$ and 0.173% for MgO). Application of BA can be useful for vegetation base material in park site.

Study on the Grow of Corn and Soybean in Artificial Soil (인공토양을 이용한 옥수수와 콩의 생육 연구)

  • 김선주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.59-69
    • /
    • 2000
  • Sludge is generated in the process of water and wastewater treatment, and it has been causing various environmental problems. From this point of view, recycling of sludge appears to be the best way. The firing technology in pottery industry is applied to the sludge treatment , and the final product is called artificial soil. The effect of mixed artificial soil with upland soil was investigated through the crop growth experiment and the physical & chemical characteristics of the mixed soils were analyses. After the growth experiment , mixed soil plots contained more CEC, OM, TN, TP than upland soil plots. This result shows that the artificial soil produced form sludge can be mixed with upland soil, and crop can be increased. From the growth analysis, growth of soybean and corn in the mixed soil plots was better than that in the original upland soil plots. Heavy metals contents in the mixed soil plots were within the quality standard. This is a promising result since in most cases heavy metals are the most concern in the application of sludge product to farmland.

  • PDF

Characteristics of Artificial Soils Produced from Sludge (슬러지를 이용하여 생산한 인공토양의 특성)

  • Yoon, Chun-Gyeong;Kim, Sun-Joo;Kwun, Tae-Young;Lee, Nam-Chool
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.200-204
    • /
    • 1998
  • Physical and chemical properties of artificial soil produced by firing process were analyzed and compared with normal dry field soil and soil quality standards. Material used for production was water and wastewater treatment sludge, chabizite, and lime. The mixed material was thermally treated in the firing kiln at about $300^{\circ}C$ and $1,000^{\circ}C$, respectively, as per designed process. General properties of the artificial soil were classified as sand by unified soil classification method and similar to the dry-field soil, and even soil conditioning effect were expected when it is mixed properly with normal soil. The artificial soil is high in pH and permeability compared to the dry-field soil. Heavy metal concentrations of the artificial soil met the soil quality standards for the farmland. Overall, the artificial soil was thought to be an appropriate soil which can be returned safely to the nature without significant adverse effect. The cost for the artificial soil production process needs to be lowered for practical application as a sludge treatment, therefore, commercializing of the artificial soil is under review.

  • PDF

A Study on the Design Load of Artificial Soil Ground (인공지반의 설계하중 산정에 관한 연구)

  • Youn, Seong-Cheol;Kim, Tae-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.36-46
    • /
    • 2009
  • The objective of this study is to analyze the effect of artificial soil ground on a structure. When the artificial soil ground is planted, the technical factors to be considered will be the load for buildings and the growth of plants. There are no current studies of the effect of artificial soil ground on a structure and this study will analyze the load effects of artificial soil ground, which mixes both pearlite and natural soil on structures. The load affecting the structures due to artificial soil ground will be maximized when the artificial soil ground becomes saturated, and which would occur when the rainfall intensity exceeds the infiltration capacity of the artificial soil ground. In order to determine whether the artificial soil ground has reached saturation or not, a 10 years frequency and 10 minutes rainfall intensity which is used for in urban drain design, is utilized. The hydraulic conductivity of artificial soil and mixed soil has been changed depending on the proportion of the mix, It has a range of fluctuation in the degree of hardening, in particular, but does not exceed the 10 minutes rainfall intensity over 10 years frequency in the most cases. Therefore, it would be efficient to apply the saturated unit weight of artificial soil ground as the design load of a structure.

Change Soil Water and Evaluation with Respect to Shallow-Extensive Green Roof System (저토심 옥상녹화시스템에 따른 토양수분의 변화)

  • Park, Jun-Suk;Park, Je-Hea;Ju, Jin-Hee;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.843-848
    • /
    • 2010
  • This study focused on the characteristics of change soil water with respect to soil thickness and soil mixture ratio, in order to effectively carry out an afforestation system for a roof with a low level of management and a light weight. Soil hardness tended to increase as sand particle was increase regardless soil thickness and soil porosity had more higher artificial soil than natural soil mixture. In case of soil pH, natural soil mixture had between 6.7 and 7.4, and artificial soil mixture had 6.0~6.8. Organic matter, electrical conductance and exchangeable content were highest in $L_{10}$, which it had the highest leafmold ratio. Soil moisture tension(kPa) in 15cm soil thickness was observed natural soil mixture had a considerable change but artificial soil mixture had a gradual change when non-rainfall kept on. In the experimental $L_{10}$, $S_{10}$, $S_7L_3$ and $S_5L_5$ object, the amount of moisture tended to rapidly decrease. However, in the experimental $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$ objects, which contained pearlite and peat moss, the amount of moisture tended to gradually decrease. As a result, the use of a artificial soil mixture soil seems to be required for the afforestation of a roof for a low level of management.

Experimental Study on Freezing Soil Barrier Wall for Contaminant Transfer Interception (오염물질 이동 차단을 위한 동결차수벽 형성에 관한 실험적 연구)

  • Shin, Eun-Chul;Kim, Jin-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.29-34
    • /
    • 2011
  • The purpose of this study was to prevent spreading of contaminants from movement of underground water by creating a barrier using artificial freezing method on a soil contaminated by oils and various DNAPLs. Specimens with 80% and 90% degrees of saturation were prepared to form freezing barrier using artificial freezing method. As the results of freezing specimen within soil bin with artificial ground freezing system, artificial contaminated soil cut off wall formed the thinnest wall after 12 hours. It is judged that this cut off wall will control the second soil pollution by intercepting expansion and movement of pollutants and DNAPLs within artificial contaminated soil cut off wall by underground water, intercepting inflow or outflow of underground water. Cut off walls formed by artificial ground freezing system had each other freezing speed according to degree of saturation.