• Title/Summary/Keyword: artificial skin sensor

Search Result 15, Processing Time 0.019 seconds

Patent Analysis in the Clinical Diagnosis Sector : Before and After COVID-19 (COVID-19 전후 의료 진단 특허 출원 동향 분석)

  • Han, Yoojin;Park, Sunju
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.25-35
    • /
    • 2022
  • Objectives : This study aims to analyze the patents filed in the clinical diagnosis sector where technologies have been actively developed since the advent of the 4th industrial revolution. Methods : The analysis has been conducted in two ways - the period from 2016 to 2021 and the time points before and after COVID-19 - by visualizing based on the word cloud method. Results : Over two thirds of patents has been filed in the A61B sector (71.8%) and cure, sensor, self diagnosis, control, and breakdown have been observed in the period above. During the overall period (2016~2021), 'ultrasound'(7.5%), 'image'(5.1%), 'skin'(4.0%), 'treatment'(3.4%), and 'artificial intelligence(2.5%)' were the frequently patent applications technologies. In addition, 'ultrasound'(6.2%), 'image'(5.5%), 'skin'(4.0%), 'treatment' (3.7%), and 'portable'(1.7%) appeared most frequently before COVID-19 whereas 'ultrasound(5.5%)', 'artificial intelligence(4.2%)', 'diagnostic device'(1.9%), 'dimentia'(1.6%), and 'diagnostic kit'(1.4%) emerged the most after COVID-19. Conclusion : This study is meaningful in that it showed the technological development trend in the digital diagnosis sector and it was found that the Korean medicine field should contribute to this field more actively in the future.

High-Performance Multimodal Flexible Tactile Sensor Capable of Measuring Pressure and Temperature Simultaneously (압력과 온도측정 기능을 갖는 고성능 플렉시블 촉각센서)

  • Jang, Jin-Seok;Kang, Tae-Hyung;Song, Han-Wook;Park, Yon-Kyu;Kim, Min-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.683-688
    • /
    • 2014
  • This paper presents a high-performance flexible tactile sensor based on inorganic silicon flexible electronics. We created 100 nm-thick semiconducting silicon ribbons equally distributed with 1 mm spacing and $8{\times}8$ arrays to sense the pressure distribution with high-sensitivity and repeatability. The organic silicon rubber substrate was used as a spring material to achieve both of mechanical flexibility and robustness. A thin copper layer was deposited and patterned on top of the pressure sensing layer to create a flexible temperature sensing layer. The fabricated tactile sensor was tested through a series of experiments. The results showed that the tactile sensor is capable of measuring pressure and temperature simultaneously and independently with high precision.

Quantifiable and feasible estrus detection using the ultrasonic sensor array and digital infrared thermography

  • Lee, Ji Hwan;Lee, Dong Hoon;Yun, Won;Oh, Han Jin;An, Ji Seon;Kim, Young Gwang;Kim, Gok Mi;Cho, Jin Ho
    • Journal of Animal Science and Technology
    • /
    • v.61 no.3
    • /
    • pp.163-169
    • /
    • 2019
  • Detection of estrus is an essential factor as a method of successful breeding in the sow. As increasing the adaption of the information and communication technology (ICT) into swine industry, this study focuses on a possibility and quantification of standing time, vulva and body temperature as methods of estrus detection, comparing each time and temperature in estrus and non-estrus period, and analyzing each success rate of new and existing methods. Ultrasonic sensor array and digital infrared thermography were used to evaluate whether new methods such as standing time and number, and vulva and skin temperature can be replaced, or these methods can be quantifiable in estrus period. Ultrasonic sensor array was installed beside the stall and digital infrared thermography was placed in the rear of sow to collect the dates of sow in estrus and non-estrus period. This study showed total standing time, number and number over 10 minutes, and vulva temperature of the sow in estrus period were increased (p < 0.05) compared with those of sow in non-estrus period, respectively. Detection of estrus using standing time and vulva temperature tended (p = 0.06) to increase the success rate when artificial insemination (AI) was performed. In conclusion, standing time and vulva temperature increased when estrus happened. Success rate of AI of sow using these methods showed an increasing trend. Therefore, existing method using the naked eye can be replaced to new method such as vulvar temperature and standing time when detecting the estrus.

Transparent and Flexible All-Organic Multi-Functional Sensing Devices Based on Field-effect Transistor Structure

  • Trung, Tran Quang;Tien, Nguyen Thanh;Seol, Young-Gug;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.491-491
    • /
    • 2011
  • Transparent and flexible electronic devices that are light-weight, unbreakable, low power consumption, optically transparent, and mechanical flexible possibly have great potential in new applications of digital gadgets. Potential applications include transparent displays, heads-up display, sensor, and artificial skin. Recent reports on transparent and flexible field-effect transistors (tf-FETs) have focused on improving mechanical properties, optical transmittance, and performances. Most of tf-FET devices were fabricated with transparent oxide semiconductors which mechanical flexibility is limited. And, there have been no reports of transparent and flexible all-organic tf-FETs fabricated with organic semiconductor channel, gate dielectric, gate electrode, source/drain electrode, and encapsulation for sensor applications. We present the first demonstration of transparent, flexible all-organic sensor based on multifunctional organic FETs with organic semiconductor channel, gate dielectric, and electrodes having a capability of sensing infrared (IR) radiation and mechanical strain. The key component of our device design is to integrate the poly(vinylidene fluoride-triflouroethylene) (P(VDF-TrFE) co-polymer directly into transparent and flexible OFETs as a multi-functional dielectric layer, which has both piezoelectric and pyroelectric properties. The P(VDF-TrFE) co-polumer gate dielectric has a high sensitivity to the wavelength regime over 800 nm. In particular, wavelength variations of P(VDF-TrFE) molecules coincide with wavelength range of IR radiation from human body (7000 nm ~14000 nm) so that the devices are highly sensitive with IR radiation of human body. Devices were examined by measuring IR light response at different powers. After that, we continued to measure IR response under various bending radius. AC (alternating current) gate biasing method was used to separate the response of direct pyroelectric gate dielectric and other electrical parameters such as mobility, capacitance, and contact resistance. Experiment results demonstrate that the tf-OTFT with high sensitivity to IR radiation can be applied for IR sensors.

  • PDF

The Design of Temporal Bone Type Implantable Microphone for Reduction of the Vibrational Noise due to Masticatory Movement (저작운동으로 인한 진동 잡음 신호의 경감을 위한 측두골 이식형 마이크로폰의 설계)

  • Woo, Seong-Tak;Jung, Eui-Sung;Lim, Hyung-Gyu;Lee, Yun-Jung;Seong, Ki-Woong;Lee, Jyung-Hyun;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.144-150
    • /
    • 2012
  • A microphone for fully implantable hearing device was generally implanted under the skin of the temporal bone. So, the implanted microphone's characteristics can be affected by the accompanying noise due to masticatory movement. In this paper, the implantable microphone with 2-channels structure was designed for reduction of the generated noise signal by masticatory movement. And an experimental model for generation of the noise by masticatory movement was developed with considering the characteristics of human temporal bone and skin. Using the model, the speech signal by a speaker and the artificial noise by a vibrator were supplied simultaneously into the experimental model, the electrical signals were measured at the proposed microphone. The collected signals were processed using a general adaptive filter with least mean square(LMS) algorithm. To confirm performance of the proposed methods, the correlation coefficient and the signal to noise ratio(SNR) before and after the signal processing were calculated. Finally, the results were compared each other.