Mun, Young-Sik;Nam, Won-Ho;Kim, Taegon;Svoboda, Mark D.;Hayes, Michael J.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.123-123
/
2019
최근 기후변화로 인해 중국, 한국, 일본, 몽골 등을 포함한 동아시아 지역은 태풍, 가뭄, 홍수와 같은 자연재해의 발생 빈도가 증가하고 있는 추세이다. 중국의 경우 2017년 극심한 가뭄으로 1,850만 (ha)의 농작물 피해가 발생하였으며, 몽골 또한 2017년 4월 이후 극심한 가뭄으로 사막화가 급속도로 진행되고 있다. 위성 기반의 강우 자료는 공간과 시간 해상도가 높아짐에 따라 지상관측소 강수량 자료의 대체 수단으로 이용되고 있다. 본 연구에서는 Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Global Precipitation Climatology Centre (GPCC) 강우 위성 자료를 활용하여 기상학적 가뭄지수인 표준강수지수 (Standardized Precipitation Index, SPI)를 산정하였다. 시간 해상도는 월별 영상을 기준으로 2008년부터 2017년까지 지난 10년간의 데이터를 이용하였으며, 각각 격자가 다른 위성영상을 기존 기상관측소와 비교하였다. 피어슨 상관계수 (Pearson Correlation Coefficient, R)를 활용하여 강우 위성 영상과 지상관측소의 상관관계를 분석하고, 평균절대오차 (Mean Absolute Error, MAE), 평균제곱근오차 (Root Mean Square Error, RMSE)를 통해 통계적으로 정확도를 분석하였다. 인공위성 강수량 자료는 미계측 지역이 많은 곳이나 측정이 불가능한 지역에 효율성 측면에서 중요한 이점을 제공할 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.294-294
/
2021
강우에 따른 수위예측은 수자원 관리 및 재해 예방에 있어 중요하다. 기존의 수문분석은 해당지역의 지형 데이터, 매개변수 최적화 등 수위예측 분석에 있어 어려움을 동반한다. 최근 AI(Artificial Intelligence) 기술의 발전에 따라, 수자원 분야에 AI 기술을 활용하는 연구가 수행되고 있다. 본 연구에서는 데이터 간의 관계를 포착할 수 있는 AI 기반의 기법을 이용하여 강우에 따른 수위예측을 실시하였다. 연구대상 유역으로는 과거 수문데이터가 풍부한 설마천 유역으로 선정하였다. AI 기법으로는 머신러닝 중 SVM (Support Vector Machine)과 Gradient boosting 기법을 이용하였으며, 딥러닝으로는 시계열 분석에 사용되는 RNN (Recurrent Neural Network) 중 LSTM (Long Short-Term Memory) 네트워크을 이용하여 수위 예측 분석을 수행하였다. 성능지표로는 수문분석에 주로 사용되는 상관계수와 NSE (Nash-Sutcliffe Efficiency)를 이용하였다. 분석결과 세 기법 모두 강우에 따른 수위예측을 우수하게 수행하였다. 이 중, LSTM 네트워크는 과거데이터를 이용한 보정기간이 늘어날수록 더욱 높은 성능을 보여주었다. 우리나라의 집중호우와 같은 긴급 재난이 우려되는 상황 시 수위예측은 빠른 판단을 요구한다. 비교적 간편한 데이터를 이용하여 수위예측이 가능한 AI 기반 기법을 적용할 시 위의 요구사항을 충족할 것이라 사료된다.
Le, Xuan-Hien;Nguyen, Giang V.;Jung, Sungho;Lee, Giha
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.148-148
/
2022
Spatiotemporal precipitation data is one of the primary quantities in hydrological as well as climatological studies. Despite the fact that the estimation of these data has made considerable progress owing to advances in remote sensing, the discrepancy between satellite-derived precipitation product (SPP) data and observed data is still remarkable. This study aims to propose an effective deep learning model (DLM) for bias correction of SPPs. In which TRMM (The Tropical Rainfall Measuring Mission), CMORPH (CPC Morphing technique), and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) are three SPPs with a spatial resolution of 0.25o exploited for bias correction, and APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) data is used as a benchmark to evaluate the effectiveness of DLM. We selected the Mekong River Basin as a case study area because it is one of the largest watersheds in the world and spans many countries. The adjusted dataset has demonstrated an impressive performance of DLM in bias correction of SPPs in terms of both spatial and temporal evaluation. The findings of this study indicate that DLM can generate reliable estimates for the gridded satellite-based precipitation bias correction.
Objective: The present study aimed to survey seasonal changes in reproductive performance of local cows receiving artificial insemination (AI) in the Pursat province of Cambodia, a tropical country, to investigate if ambient conditions affect the reproductive performance of cows as to better understand the major problems regarding cattle production. Methods: The number of cows receiving AI, resultant number of calving, and calving rate were analyzed for those receiving the first AI from 2016 to 2017. The year was divided into three seasons: cool/dry (from November to February), hot/dry (from March to June), and wet (from July to October), based on the maximal temperature and rainfall in Pursat, to analyze the relationship between ambient conditions and the reproductive performance of cows. Body condition scores (BCS) and feeding schemes were also analyzed in these seasons. Results: The number of cows receiving AI was significantly higher in the cool/dry season than the wet season. The number of calving and calving rate were significantly higher in cows receiving AI in the cool/dry season compared with the hot/dry and wet seasons. The cows showed higher BCSs in the cool/dry season compared to the hot/dry and wet seasons probably due to the seasonal changes in the feeding schemes: these cows grazed on wild grasses in the cool/dry season but fed with a limited amount of grasses and straw in the hot/dry and wet seasons. Conclusion: The present study suggests that the low number of cows receiving AI, low number of calving, and low calving rate could be mainly due to poor body condition as a result of the poor feeding schemes during the hot/dry and wet seasons. The improvement of body condition by the refinement of feeding schemes may contribute to an increase in the reproductive performance in cows during the hot/dry and wet seasons in Cambodia.
Park, Tae-Yang;Kim, Sung-Jae;Jang, Jeong-Ryeol;Choi, Kang-Won;Kim, Sang-Min
Journal of agriculture & life science
/
v.45
no.5
/
pp.97-103
/
2011
The purpose of this study was to analyze the pollutant reduction effect for non-irrigated crop land by nonpoint source pollution control. For a field scale monitoring, 6 plots (5m width and 22m length) and 3 sediment traps were installed. At the outlet of each plot, the stage gauges were installed for runoff monitoring. For a rainfall monitoring, tipping bucket rain gage was installed within the experiment site. Through the artificial irrigation, runoff from the plots were monitored. The SS, TOC, T-N, T-P, COD, NTU of sampled water were analyzed by standard methods. The SS, TOC, T-N, T-P, COD, NTU concentration of initial runoff were 15.00, 1.54, 5.27, 0.07, 4.72, 0.45mg/L, respectively. Four hours later than the initial runoff, the concentration was changed to 1.00, 0.94, 4.06, 0.01, 0.60, 0.33 mg/L, respectively. As a result of artificial irrigation, three out of four sediment traps were filled with runoff water from the experimental plots. One sediment trap was not filled with runoff water because the artificial irrigation was not supplied for two experimental plots. The stage of sediment traps were gradually lowered. However, the water quality didn't showed a decrease trend as the stage went down because the suspended solid was not equally collected during the water sampling.
In this study, the artificial neural network model is applied for real-time dam inflow prediction and then evaluated for the prediction lead times (1, 3, 6 hr) in dam basins in Korea. For the training and testing the model, hourly precipitation and inflow are used as input data according to average annual inflow. The results show that the model performance for up to 6 hour is acceptable because the NSE is 0.57 to 0.79 or higher. Totally, the predictive performance of the model in dry seasons is weaker than the performance in wet seasons, and this difference in performance increases in the larger basin. For the 6 hour prediction lead time, the model performance changes as the sequence length increases. These changes are significant for the dry season with increasing sequence length compared to the wet season. Also, with increasing the sequence length, the prediction performance of the model improved during the dry season. Comparison of observed and predicted hydrographs for flood events showed that although the shape of the prediction hydrograph is similar to the observed hydrograph, the peak flow tends to be underestimated and the peak time is delayed depending on the prediction lead time.
An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.
Journal of the Korean Association of Geographic Information Studies
/
v.23
no.1
/
pp.15-29
/
2020
Recently, the incidence of flooding in Korea has decreased by the measures by central and local governments, however the scale of damage is increasing due to the improvement of living standard. One of the causes of such flood damage is natural causes such as rainfall exceeding the planned frequency of flood control under climate change. In addition, there are artificial causes such as encroachment of river spaces and management problems in upstream basins without consideration of downstream damage potential by regional development flood. In this study, in order to reduce the inundation damage caused by flooding of river, the situation at the time of inundation damage was reproduced by the detailed topographic data and 2D numerical model. Therefore, the effect of preparing various disaster prevention measures for the lowland was simulated in advance so that quantitative evaluation could be achieved. The target area is Taehwa river basin, where flooding was caused by the flooding of river waters caused by typhoon Chaba in October 2016. As a result of rainfall-discharge and two-dimensional analysis, the simulation results agree with the observed in terms of flood depth, flood arrival time and flooded area. This study examined the applicability of hydraulic analysis on river using two-dimensional inundation model, by applying detailed topographic data and it is expected to contribute to establish of disaster prevention measures.
Korean territories has formed about 70% of mountainous areas that have acidified serious level to average pH 4-5. There are a number of abandoned metal mines about 1,000 in Korea. However, mine tailings and waste rock included heavy metals are exposed to long-term environment without prevention facility or treatment system. Thus, ongoing management and monitoring of soil environment are required. Most of abandoned mine scattered in forest areas of slopes. Soil erosion due to continuous rainfall in the slopy areas can cause the secondary pollution by the influence eutrophication of water system and the productivity loss of the plant. Therefore, this study would like to estimate pH leaching rate by artificial rainfall using waste neutralization-agent in lysimeter. Moreover, the potentially of secondary pollution related to precipitation is figured out through the experiments, and the optimal planting methods would examinate after neutralizing treatment in soil. Experiments composed three kinds of lysimeter; lysimeter 1 had filled only acidic soil, lysimeter 2 had neutralized soil, and lysimeter 3 had planting plants after neutralized soil. In the results, lysimeter 2 showed the lowest pH leaching, and there is not specific relativity with pH leaching of the seasonal characteristics.
This study was carried out to determine the effect of mixing with paraffin oil on rainfastness of mancozeb on citrus fruits and assay the improvement of control effect of mancozeb against citrus melanose by mixing with paraffin oil. In artificial rainfall condition (7.2 mm/hr), the attached contents of mancozeb on detached fruits were the most in treatment of mancozeb 0.2% + paraffin oil 0.1% as the contents was $7.43{\mu}g/cm^2$ after treatment of rainfall for 10 hr. In open field condition, the contents of attached mancozeb on fruits were significantly more in treatment of mancozeb 0.2% + paraffin oil 0.1% or 0.25% than the other treatments 1, 15 and 25 days after treatment 2009 and 2010 seasons. The disease incidence was significantly lower in treatment of mancozeb 0.2% + paraffin oil 0.1% or 0.25% than treatment of mancozeb 0.2% only 2009, 2010 and 2011 seasons. Based on this study, it was suggested that the control effect of mancozeb against citrus melanose can be improved by mixing with paraffin oil.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.