• 제목/요약/키워드: artificial propagation

검색결과 532건 처리시간 0.027초

Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.251-262
    • /
    • 2007
  • This paper examines the application of artificial neural networks (ANN) to the response prediction of geometrically nonlinear truss structures. Two types of analysis (deterministic and probabilistic analyses) are considered. A three-layer feed-forward backpropagation network with three input nodes, five hidden layer nodes and two output nodes is firstly developed for the deterministic response analysis. Then a back propagation training algorithm with Bayesian regularization is used to train the network. The trained network is then successfully combined with a direct Monte Carlo Simulation (MCS) to perform a probabilistic response analysis of geometrically nonlinear truss structures. Finally, the proposed ANN is applied to predict the response of a geometrically nonlinear truss structure. It is found that the proposed ANN is very efficient and reasonable in predicting the response of geometrically nonlinear truss structures.

Artificial Neural Network Discrimination of Multi-PD Sources Detected by UHF Sensor

  • Lee, Kang-Won;Jang, Dong-Uk;Park, Jae-Yeol;Kang, Seong-Hwa;Lim, Kee-Joe
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권1호
    • /
    • pp.5-9
    • /
    • 2003
  • The waveforms of partial discharges (PDs) imply physical and structural properties of PD sources, so analyzing them give us information on the kind of PD sources and the location. Waveforms of PD as a time series function have variable amplitudes but sustain a certain uniform shape, which shows well the characteristics of the waveforms and frequency region. They can also be used as parameters having time and frequency information of PD signals and applied to classification of multiple PDs sources via Artificial Neural Network with back propagation (BP) learning.

Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Jumaat, Mohd Zamin;Jameel, Mohammed;Arumugam, Arul M.S.
    • Computers and Concrete
    • /
    • 제11권3호
    • /
    • pp.237-252
    • /
    • 2013
  • This paper presents the application of artificial neural network (ANN) to predict deep beam deflection using experimental data from eight high-strength-self-compacting-concrete (HSSCC) deep beams. The optimized network architecture was ten input parameters, two hidden layers, and one output. The feed forward back propagation neural network of ten and four neurons in first and second hidden layers using TRAINLM training function predicted highly accurate and more precise load-deflection diagrams compared to classical linear regression (LR). The ANN's MSE values are 40 times smaller than the LR's. The test data R value from ANN is 0.9931; thus indicating a high confidence level.

성공적인 e-Business를 위한 인공지능 기법 기반 웹 마이닝 (Web Mining for successful e-Business based on Artificial Intelligence Techniques)

  • 이장희;유성진;박상찬
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.159-175
    • /
    • 2002
  • 웹 마이닝은 e-Business 환경하에서 존재하는 대량의 웹 데이터에 데이터 마이닝 기법을 적용하여 유용하고 이해 가능한 정보를 추출해내는 과정을 의미하는데, 성공적인 e-Business전개를 위한 핵심적인 기술이다. 본 논문은 인공지능 기법에 기반한 웹마이닝 기술을 활용하여 e-Business상의 온라인 고객의 특성을 분석할 수 있는 data visualization system과 구매 판매 예측시스템의 효과적인 구조와 핵심적인 분석절차를 제안하였다.

  • PDF

인공신경망을 이용한 실험적 부싱모델링 (Empirical Bushing Model using Artificial Neural Network)

  • 손정현;유완석;박동운
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.151-157
    • /
    • 2003
  • In this paper, a blackbox approach is carried out to model the nonlinear dynamic bushing model. One-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop an empirical bushing model with an artificial neural network. The back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra algorithm of 'NARMAX' form is employed to consider these effects. A numerical example is carried out to verify the developed bushing model.

아연도금강판의 저항 점용섭에서 인공신경회로망을 이용한 용융부 추정에 관한 연구 (Estimation of Nugget Size in Resistance Spot Welding for Galvanized Steel Using an Artificial Neural Networks)

  • 박종우;이정우;최용범;장희석
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1992년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.91-95
    • /
    • 1992
  • The resistance spot welding process has been extensively used for joining of sheet metals, which are subject to variation of many process variables. Many qualitive analyses of sampled process variables have been attempted to predict nugget size. In this paper, dynamic resistance and electrode movement signal which is a good indicative of the nugget size was examined by introducing an artificial neural network estimator. An artificial neural feedforward network with back-propagation of error was applied for the estimation of the nugget size. The prediction by the neural network is in good agreement with the actual nugget size for resistance spot welding of galvanized steel. The results are quite promising in that the quantitative estimation of the invisible nugget size can be achieved without conventional destructive testing of welds.

  • PDF

WFSO 알고리즘을 이용한 인공 신경망과 합성곱 신경망의 학습 (Training Artificial Neural Networks and Convolutional Neural Networks using WFSO Algorithm)

  • 장현우;정성훈
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권5호
    • /
    • pp.969-976
    • /
    • 2017
  • 본 논문에서는 최적화 알고리즘으로 개발된 WFSO(Water Flowing and Shaking Optimization) 알고리즘을 사용한 인공신경망 과합성공 신경망의 학습 방법을 제안한다. 최적화 알고리즘은 다수의 후보 해를 기반으로 탐색해 나가기 때문에 일반적으로 속도가 느린 단점이 있으나 지역 최소값에 거의 빠지지 않고 병렬화가 용이하며 미분 불가능한 활성화함수를 갖는 인공신경망 학습도 가능하고 구조와 가중치를 동시에 최적화 할 수 있는 장점이 있다. 본 논문에서는 WFSO 알고리즘을 인공신경망 학습에 적용하는 방법을 설명하고 다층 인공신경망과 합성곱 신경망에서 오류역전파 알고리즘과 성능을 비교한다.

적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어 (Maximum Torque Control of IPMSM with Adaptive Learning Fuzzy-Neural Network)

  • 고재섭;최정식;이정호;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.309-314
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current md voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using adaptive teaming fuzzy neural network and artificial neural network. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper proposes speed control of IPMSM using adaptive teaming fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive teaming fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive teaming fuzzy neural network and artificial neural network.

  • PDF

An Experimental Investigation of the Application of Artificial Neural Network Techniques to Predict the Cyclic Polarization Curves of AL-6XN Alloy with Sensitization

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.62-68
    • /
    • 2021
  • Artificial neural network techniques show an excellent ability to predict the data (output) for various complex characteristics (input). It is primarily specialized to solve nonlinear relationship problems. This study is an experimental investigation that applies artificial neural network techniques and an experimental design to predict the cyclic polarization curves of the super-austenitic stainless steel AL-6XN alloy with sensitization. A cyclic polarization test was conducted in a 3.5% NaCl solution based on an experimental design matrix with various factors (degree of sensitization, temperature, pH) and their levels, and a total of 36 cyclic polarization data were acquired. The 36 cyclic polarization patterns were used as training data for the artificial neural network model. As a result, the supervised learning algorithms with back-propagation showed high learning and prediction performances. The model showed an excellent training performance (R2=0.998) and a considerable prediction performance (R2=0.812) for the conditions that were not included in the training data.

인공신경망을 이용한 심부 갱내온도 예측 (Temperature Prediction of Underground Working Place Using Artificial Neural Networks)

  • 김윤광;김진
    • 터널과지하공간
    • /
    • 제17권4호
    • /
    • pp.301-310
    • /
    • 2007
  • 심부 탄광 개발의 타당성 검토나 통기계획 수립시 갱내 작업장의 온도를 예측하는 것은 매우 중요하다. 심부의 탄광주변의 암반은 매우 다양하고 여러 암종으로 구성되어 있어 암반의 열 전도율(thermal conductivity)를 구하는 일은 매우 어려운 작업이다. 이에 본 연구에서는 복잡한 갱내여건에 상응한 열전도율을 도출하기 위해 artificial neural network(인공신경망)를 새롭게 도입하여 갱내 기상 예측을 위한 전산 프로그램을 개발하였다. 인공 신경망을 이용한 열전도율 계산 프로그램은 back-propagation algorithm을 사용하였으며 9개의 인자를 받아들이는 input layer와 5개와 3개의 뉴런을 가지는 두 개의 hidden layer로 구성되어져 있다. 개발된 TemPredict를 이용하여 장성광업소의 심부온도를 검증한 결과 장성생산부 -300 ML 하반구 입구의 온도가 $25.65^{\circ}C$로 산출되었고 실제 온도($25.7^{\circ}C$)와 $0.05^{\circ}C$의 차이를 나타냈다. 이는 오차 범위 5% 이내에 포함되는 것으로 검증결과 95% 이상의 높은 신뢰도를 나타냈다. 위의 검증결과를 통해 TemPredict를 이용하여 현재 굴진중인 -425 ML이 관통이 되었을때의 장성생산부 주운반갱도 9X지점의 온도를 예측하였다. 예측 결과 장성생산부 주운반갱도 9X지점의 온도는 $28.2^{\circ}C$로 예측되었다. 향후 TemPredict를 통한 온도예측을 통하여 광산이나 지하구조물의 설계시 통기계획에 많은 도움을 줄 것으로 기대된다.