Acknowledgement
This research was a part of the project titled 'Demonstration of aftertreatment systems of Ship's air pollutant (NOx/SOx/PM) and establishment of their certification system', funded by the Ministry of Oceans and Fisheries, Korea.
References
- Z. Cui, S. Chen, Y. Dou, S. Han, L. Wang, C. Man, X. Wang, S. Chen, Y. F. Chen, and X. Li, Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH, Corrosion Science, 150, 218 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.02.002
- R. T. Loto, Effect of elevated temperature variations on the corrosion resistance of S31603 and SS2562 austenitic stainless steels in chloride-sulphate environments, Journal of Materials Research and Technology, 8, 5415 (2019). Doi: https://doi.org/10.1016/j.jmrt.2019.09.008
- H. M. Jang, D. J. Kim, and H. P. Kim, Sensitivity to Intergranular Corrosion According to Heat Treatment of 304L Stainless Steel, Corrosion Science and Technology, 19, 37 (2020). Doi: https://doi.org/10.14773/cst.2020.19.1.37
- Z. G. Song and E. X. Pu, Precipitated phases of superaustenitic stainless steel 654SMO, Journal of Iron and Steel Research International, 24, 743 (2017). Doi: https://doi.org/10.1016/S1006-706X(17)30112-7
- Q. Hu, Y. Liu, T. Zhang, S. Geng, and F. Wang, Modeling the corrosion behavior of Ni-Cr-Mo-V high strength steel in the simulated deep sea environments using design of experiment and artificial neural network, Journal of Materials Science & Technology, 35, 168 (2019). Doi: https://doi.org/10.1016/j.jmst.2018.06.017
- C. L. C. Roxas and B. A. Lejano, An artificial neural network model for the corrosion current density of steel in mortar mixed with seawater, International Journal of GEOMATE, 16, 79 (2019). Doi: https://doi.org/10.21660/2019.56.4585
- M. T. Hagan and M. B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, 5, 989 (1994). Doi: https://doi.org/10.1109/72.329697
- C. I. Rocabruno-Valdes, J. G. Gonzalez-Rodriguez, Y. DiazBlanco, A. U. Juantorena, J. A. Munoz-Ledo, Y. El-Hamzaoui, and J. A. Hernandez, Corrosion rate prediction for metals in biodiesel using artificial neural networks, Renewable Energy, 140, 592 (2019). Doi: https://doi.org/10.1016/j.renene.2019.03.065
- G. Jiang, J. Keller, P. L. Bond, and Z. Yuan, Predicting concrete corrosion of sewers using artificial neural network, Water Research, 92, 52 (2016). Doi: https://doi.org/10.1016/j.watres.2016.01.029
- J. Sun, L. Fang, and J. Han, Optimization of concrete hollow brick using hybrid genetic algorithm combining with artificial neural networks, International Journal of Heat and Mass Transfer, 53, 5509 (2010). Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.006
- G. Lachtermacher and J. D. Fuller, Back propagation in time series forecasting, Journal of Forecasting, 14, 381 (1995). Doi: https://doi.org/10.1002/for.3980140405