DOI QR코드

DOI QR Code

An Experimental Investigation of the Application of Artificial Neural Network Techniques to Predict the Cyclic Polarization Curves of AL-6XN Alloy with Sensitization

  • Jung, Kwang-Hu (Mokpo branch, Korea institute of maritime and fisheries technology) ;
  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo Maritime University)
  • Received : 2021.04.02
  • Accepted : 2021.04.08
  • Published : 2021.04.30

Abstract

Artificial neural network techniques show an excellent ability to predict the data (output) for various complex characteristics (input). It is primarily specialized to solve nonlinear relationship problems. This study is an experimental investigation that applies artificial neural network techniques and an experimental design to predict the cyclic polarization curves of the super-austenitic stainless steel AL-6XN alloy with sensitization. A cyclic polarization test was conducted in a 3.5% NaCl solution based on an experimental design matrix with various factors (degree of sensitization, temperature, pH) and their levels, and a total of 36 cyclic polarization data were acquired. The 36 cyclic polarization patterns were used as training data for the artificial neural network model. As a result, the supervised learning algorithms with back-propagation showed high learning and prediction performances. The model showed an excellent training performance (R2=0.998) and a considerable prediction performance (R2=0.812) for the conditions that were not included in the training data.

Keywords

Acknowledgement

This research was a part of the project titled 'Demonstration of aftertreatment systems of Ship's air pollutant (NOx/SOx/PM) and establishment of their certification system', funded by the Ministry of Oceans and Fisheries, Korea.

References

  1. Z. Cui, S. Chen, Y. Dou, S. Han, L. Wang, C. Man, X. Wang, S. Chen, Y. F. Chen, and X. Li, Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH, Corrosion Science, 150, 218 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.02.002
  2. R. T. Loto, Effect of elevated temperature variations on the corrosion resistance of S31603 and SS2562 austenitic stainless steels in chloride-sulphate environments, Journal of Materials Research and Technology, 8, 5415 (2019). Doi: https://doi.org/10.1016/j.jmrt.2019.09.008
  3. H. M. Jang, D. J. Kim, and H. P. Kim, Sensitivity to Intergranular Corrosion According to Heat Treatment of 304L Stainless Steel, Corrosion Science and Technology, 19, 37 (2020). Doi: https://doi.org/10.14773/cst.2020.19.1.37
  4. Z. G. Song and E. X. Pu, Precipitated phases of superaustenitic stainless steel 654SMO, Journal of Iron and Steel Research International, 24, 743 (2017). Doi: https://doi.org/10.1016/S1006-706X(17)30112-7
  5. Q. Hu, Y. Liu, T. Zhang, S. Geng, and F. Wang, Modeling the corrosion behavior of Ni-Cr-Mo-V high strength steel in the simulated deep sea environments using design of experiment and artificial neural network, Journal of Materials Science & Technology, 35, 168 (2019). Doi: https://doi.org/10.1016/j.jmst.2018.06.017
  6. C. L. C. Roxas and B. A. Lejano, An artificial neural network model for the corrosion current density of steel in mortar mixed with seawater, International Journal of GEOMATE, 16, 79 (2019). Doi: https://doi.org/10.21660/2019.56.4585
  7. M. T. Hagan and M. B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, 5, 989 (1994). Doi: https://doi.org/10.1109/72.329697
  8. C. I. Rocabruno-Valdes, J. G. Gonzalez-Rodriguez, Y. DiazBlanco, A. U. Juantorena, J. A. Munoz-Ledo, Y. El-Hamzaoui, and J. A. Hernandez, Corrosion rate prediction for metals in biodiesel using artificial neural networks, Renewable Energy, 140, 592 (2019). Doi: https://doi.org/10.1016/j.renene.2019.03.065
  9. G. Jiang, J. Keller, P. L. Bond, and Z. Yuan, Predicting concrete corrosion of sewers using artificial neural network, Water Research, 92, 52 (2016). Doi: https://doi.org/10.1016/j.watres.2016.01.029
  10. J. Sun, L. Fang, and J. Han, Optimization of concrete hollow brick using hybrid genetic algorithm combining with artificial neural networks, International Journal of Heat and Mass Transfer, 53, 5509 (2010). Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.006
  11. G. Lachtermacher and J. D. Fuller, Back propagation in time series forecasting, Journal of Forecasting, 14, 381 (1995). Doi: https://doi.org/10.1002/for.3980140405