• Title/Summary/Keyword: artificial propagation

Search Result 534, Processing Time 0.023 seconds

Implementation of artificial neural network with on-chip learning circuitry (학습 기능을 내장한 신경 회로망의 하드웨어 구현)

  • 최명렬
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.186-192
    • /
    • 1996
  • A modified learning rule is introduced for the implementation of feedforward artificial neural networks with on-chip learning circuitry using standard analog CMOS technology. Learning rule, is modified form the EBP (error back propagation) rule which is one of the well-known learning rules for the feedforward rtificial neural nets(FANNs). The employed MEBP ( modified EBP) rule is well - suited for the hardware implementation of FANNs with on-chip learning rule. As a ynapse circuit, a four-quadrant vector-product linear multiplier is employed, whose input/output signals are given with voltage units. Two $2{\times}2{\times}1$ FANNs are implemented with the learning circuitry. The implemented FANN circuits have been simulatied with learning test patterns using the PSPICE circuit simulator and their results show correct learning functions.

  • PDF

Rotor Resistance Estimation of Induction Motor by Artificial Neural-Network (인공신경회로망에 의한 유도전동기의 회전자 저항 추정)

  • Kim, Kil-Bong;Choi, Jung-Sik;Ko, Jae-Sub;Chugn, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.50-52
    • /
    • 2006
  • This paper Proposes a new method of on-line estimation for rotor resistance of the induction motor in the indirect vector controlled drive, using artificial neural network (ANN). The back propagation algorithm is used for training of the neural networks. The error between the desired state variable of an induction motor and actual state variable of a neural network model is back propagated to adjust the weight of a neural network model, so that the actual state variable tracks the desired value. The performance of rotor resistance estimator and torque and flux responses of drive, together with these estimators, are investigated variations rotor resistance from their nominal values. The rotor resistance are estimated analytically, using the proposed ANN in a vector controlled induction motor drive.

  • PDF

High Performance Concrete Mixture Design using Artificial Neural Networks (신경망을 이용한 고성능 콘크리트의 배합설계)

  • 양승일;윤영수;이승훈;김규동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.545-550
    • /
    • 2002
  • Concrete is one of the essential structural materials in the construction. But, concrete consists of many materials and is affected by many factors such as properties of materials, site environmental situations, and skill of constructor. Therefore, concrete mixes depend on experiences of experts. However, it is more and more difficult to determine concrete mixes design by empirical means because more ingredients like mineral and chemical admixtures are included. Artificial Neural Networks(ANN) are a mimic models of human brain to solve a complex nonlinear problem. They are powerful pattern recognizers and classifiers, also their computing abilities have been proven in the fields of prediction, estimation and pattern recognition. Here, among them, the back propagation network and radial basis function network are used. Compositions of high-performance concrete mixes are eight components(water, cement, fine aggregate, coarse aggregate, fly ash, silica fume, superplasticizer and air-entrainer). Compressive strength and slump are measured. The results show that neural networks are proper tools to minimize the uncertainties of the design of concrete mixtures.

  • PDF

Forecasting Long-Term Steamflow from a Small Waterhed Using Artificial Neural Network (인공신경망 이론을 이용한 소유역에서의 장기 유출 해석)

  • 강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.69-77
    • /
    • 2001
  • An artificial neural network model was developed to analyze and forecast daily steamflow flow a small watershed. Error Back propagation neural networks (EBPN) of daily rainfall and runoff data were found to have a high performance in simulating stremflow. The model adopts a gradient descent method where the momentum and adaptive learning rate concepts were employed to minimize local minima value problems and speed up the convergence of EBP method. The number of hidden nodes was optimized using Bayesian information criterion. The resulting optimal EBPN model for forecasting daily streamflow consists of three rainfall and four runoff data (Model34), and the best number of the hidden nodes were found to be 13. The proposed model simulates the daily streamflow satisfactorily by comparison compared to the observed data at the HS#3 watershed of the Baran watershed project, which is 391.8 ha and has relatively steep topography and complex land use.

  • PDF

Pattern Recognition of EMG Signal using Artificial Neural Network (신경회로망을 이용한 근전도 신호의 특성분석 및 패턴 분류)

  • Yi, Seok-Joo;Lee, Sung-Hwan;Cho, Young-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.769-771
    • /
    • 2000
  • In this paper, pattern recognition scheme for EMG signal using artificial neural network is proposed. For manipulating ability, the movements of human arm are classified into several categories EMG signals of appropriate muscles are collected during arm movement. Patterns of EMG signals of each movement are recognized as follows: 1) The features of each EMG signal are extracted. 2) With these features, the neural network is trained by using feedforward error back-propagation (FFEBP) algorithm. The results show that the arm movements can be classified with EMG signals at high accuracy.

  • PDF

Accuracy improvement of laser interferometer with neural network (신경회로망을 이용한 레이저 간섭계 정밀도 향상)

  • Lee, Woo-Ram;Heo, Gun-Hang;Hong, Min-Suk;Choi, In-Sung;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.597-599
    • /
    • 2006
  • In this paper, we propose an artificial intelligence method to compensate the nonlinearity error which occurs in the heterodyne laser interferometer. Some superior properties such as long measurement range, ultra-precise resolution and various system set-up lead the laser interferometer to be a practical displacement measurement apparatus in various industry and research area. In ultra-precise measurement such as nanometer or subnanometer scale, however, the accuracy is limited by the nonlinearity error caused by the optical parts. The feedforward neural network trained by back-propagation with a capacitive sensor as a reference signal minimizes the nonlinearity error and we demonstrate the effectiveness of our proppsed algorithm through some experimental results.

  • PDF

Behavior of Fatigue Fracture for Carbon Steel with Surface Flaw (미소결함을 갖는 탄소강재의 피로파괴거동)

  • Song, Sam-Hong;O, Hwan-Seop
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.601-601
    • /
    • 1989
  • The behavior of fatigue was studied by using low carbon steel bar with microhole(artificial small defect) under the condition of rotary bending stress which is made artificially at smooth surface and round notch root. The results obtained can be summerized; The behavior of non-propagating cracks which are produced at both tips of small defect occurred to dissymmetry, and it is found to be double size of small defect. For the range of l>lc, threshold stress intensity is constant. However, for the range of l

Behavior of Fatigue Fracture for Carbon Steel with Surface Flaw (미소결함을 갖는 탄소강재의 피로파괴거동)

  • Song, Sam-Hong;O, Hwan-Seop
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.101-107
    • /
    • 1989
  • The behavior of fatigue was studied by using low carbon steel bar with microhole(artificial small defect) under the condition of rotary bending stress which is made artificially at smooth surface and round notch root. The results obtained can be summerized; The behavior of non-propagating cracks which are produced at both tips of small defect occurred to dissymmetry, and it is found to be double size of small defect. For the range of l>lc, threshold stress intensity is constant. However, for the range of l

  • PDF

Identification of coherent generators for dynamic equivalents using artificial neural network (신경망을 이용한 코히런트발전기의 선정)

  • Rim, Seong-Jeong;Han, Seong-Ho;Yoon, Yong-Han;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.3-5
    • /
    • 1993
  • This paper presents a identification techniques of coherent generators for dynamic equivalents using artificial neural networks. In the developed neural network, inputs are the power system parameters which have a property of coherency. Outputs of the neural network are coherency and error indices which are derived from density measure concept. The learning of developed neural network is carried out by means of error back-propagation algorithm. Identification of coherent generators are implemented by proposed grouping algorithm using coherency and error indices. The proposed method is confirmed by simulations for 39-bus New England system.

  • PDF

The Prediction of Geometrical Coniguration and Ductile Fracture using the Artificial Neural Network for a Cold Forged Product (신경망을 이용한 냉간 단조품의 기하학적 형상 및 연성파괴 예측)

  • 김동진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.201-205
    • /
    • 1996
  • This paper suggests the scheme to simultaneously accomplish prediction of fracture initation and geometrical configuration of deformation in metal forming processes using the artificial neural network. A three-layer neural network is used and a back propagation algorithm is adapted to train the network. The Cockcroft-Latham criterion is used to estimate whether fracture occurs during the deformation process. The geometrical configuration and the value of ductile fracture are measured by finite element method. The prediction of network and numerical results of simple upsetting are compared. The proposed scheme has successfully predicted the geometrical configuration and fracture initiation.

  • PDF