KIM, Jeong Eun;BAE, Yeon Jae;LEE, Hwang Goo;KIM, Dong Gun
Entomological Research
/
v.48
no.6
/
pp.540-549
/
2018
Climate change due to global warming and changes in land use increase the development time and distribution, as well as the abundance, of mosquitoes, thereby negatively affecting human life and health. In this study, we investigated the habitat characteristics of mosquito occurrence sites in Danwon-gu, Ansan city, Korea, based on a daily record of civil pest complaints lodged at the Danwon-gu Community Health Center. We considered two types of factors (natural and artificial) known to affect mosquito occurrence. We confirmed a total of 554 cases of mosquito occurrence from March 2014 to August 2017. The total study area was $49.11km^2$, with urban areas constituting the largest proportion. Additionally, we investigated habitat preferences of mosquitoes in terms of terrain factors; generally, mosquitoes occurred at low elevations and on low slopes. Regarding the preference of oviposition sites, mosquitoes occurred at higher rates near streams and crops lands. The rate of mosquito occurrence tended to increase in areas with dense human populations. Regarding climatic factors, the rate of mosquito occurrence increased in areas with high temperature and low precipitation.
Journal of The Geomorphological Association of Korea
/
v.23
no.1
/
pp.77-85
/
2016
To understand the difference of runoff discharge processes between Gwangneung deciduous and coniferous forest catchments, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge) and conducted hydrochemical analyses in the deciduous and coniferous forest catchments in Gwangneung National Arboretum in the northwest part of South Korea. Based on the end-member mixing analysis of the three storm events during the summer monsoon in 2005, the hillslope runoff in the deciduous forest catchment was higher 20% than the coniferousforest catchment during the firststorm event. Howerver, hillslope runoff increased from the second storm event in the coniferous catchment. We conclude that low soil water contents and topographical gradient characteristics highly influence runoff in the coniferous forest catchment during the first storm events. In general, coniferous forests are shown high interception loss and low soil moisture compared to the deciduous forests. It may also be more likely to be a reduction in soil porosity development when artificial coniferous forests reduced soil biodiversity. The forest soil porosity is an important indicator to determine the water recharge of the forest. Therefore, in order to secure the water resources, it should be managed coniferous forests for improving soil biodiversity and porosity.
In this study, after developing an LSTM-based deep learning model for estimating daily runoff in the Soyang River Dam basin, the accuracy of the model for various combinations of model structure and input data was investigated. A model was built based on the database consisting of average daily precipitation, average daily temperature, average daily wind speed (input up to here), and daily average flow rate (output) during the first 12 years (1997.1.1-2008.12.31). The Nash-Sutcliffe Model Efficiency Coefficient (NSE) and RMSE were examined for validation using the flow discharge data of the later 12 years (2009.1.1-2020.12.31). The combination that showed the highest accuracy was the case in which all possible input data (12 years of daily precipitation, weather temperature, wind speed) were used on the LSTM model structure with 64 hidden units. The NSE and RMSE of the verification period were 0.862 and 76.8 m3/s, respectively. When the number of hidden units of LSTM exceeds 500, the performance degradation of the model due to overfitting begins to appear, and when the number of hidden units exceeds 1000, the overfitting problem becomes prominent. A model with very high performance (NSE=0.8~0.84) could be obtained when only 12 years of daily precipitation was used for model training. A model with reasonably high performance (NSE=0.63-0.85) when only one year of input data was used for model training. In particular, an accurate model (NSE=0.85) could be obtained if the one year of training data contains a wide magnitude of flow events such as extreme flow and droughts as well as normal events. If the training data includes both the normal and extreme flow rates, input data that is longer than 5 years did not significantly improve the model performance.
Journal of the Korean Association of Geographic Information Studies
/
v.23
no.3
/
pp.26-67
/
2020
Synthetic Aperture Radar(SAR) is able to photograph the earth's surface regardless of weather conditions, day and night. Because of its possibility to search for hydrological factors such as soil moisture and groundwater, and its importance is gradually increasing in the field of water resources. SAR began to be mounted on satellites in the 1970s, and about 15 or more satellites were launched as of 2020, which around 10 satellites will be launched within the next 5 years. Recently, various types of SAR technologies such as enhancement of observation width and resolution, multiple polarization and multiple frequencies, and diversification of observation angles were being developed and utilized. In this paper, a brief history of the SAR system, as well as studies for estimating soil moisture and hydrological components were investigated. Up to now hydrological components that can be estimated using SAR satellites include soil moisture, subsurface groundwater discharge, precipitation, snow cover area, leaf area index(LAI), and normalized difference vegetation index(NDVI) and among them, soil moisture is being studied in 17 countries in South Korea, North America, Europe, and India by using the physical model, the IEM(Integral Equation Model) and the artificial intelligence-based ANN(Artificial Neural Network). RADARSAT-1, ENVISAT, ASAR, and ERS-1/2 were the most widely used satellite, but the operation has ended, and utilization of RADARSAT-2, Sentinel-1, and SMAP, which are currently in operation, is gradually increasing. Since Korea is developing a medium-sized satellite for water resources and water disasters equipped with C-band SAR with the goal of launching in 2025, various hydrological components estimation researches using SAR are expected to be active.
Kim, Jongbeom;Lee, KyoungJun;Jhang, Kyung-Young;Kim, ChungSeok
Journal of the Korean Society for Nondestructive Testing
/
v.34
no.3
/
pp.220-225
/
2014
Generally, the nonlinearity of ultrasonic waves is measured using a nonlinear parameter ${\beta}$, which is defined as the ratio of the second harmonic's magnitude to the power of the fundamental frequency component after the ultrasonic wave propagates through a material. Nonlinear parameter ${\beta}$ is recognized as an effective parameter for evaluating material degradation. In this paper, we evaluated the nonlinear parameter of Al6061-T6 which had been subjected to an artificial aging heat treatment. The measurement was using the transmitted signal obtained from contact-type transducers. After the ultrasonic test, a micro Vickers hardness test was conducted. From the result of the ultrasonic nonlinear parameter, the microstructural changes resulting from the heat treatment were estimated and the hardness test proved that these estimates were reasonable. Experimental results showed a correlation between the ultrasonic nonlinear parameter and microstructural changes produced by precipitation behavior in the material. These results suggest that the evaluation of mechanical properties using ultrasonic nonlinear parameter ${\beta}$ can be used to monitor variations in the mechanical hardness of aluminum alloys in response to an artificial aging heat-treatment.
KSCE Journal of Civil and Environmental Engineering Research
/
v.31
no.2B
/
pp.155-163
/
2011
In this study, a soil moisture estimation model was developed using a decision tree model, an artificial neural networks (ANN) model, remotely sensed data, and ground network data of daily precipitation, soil moisture and surface temperature. Soil moisture data of the Yongdam dam basin (5 sites) were used for model validation. Satellite remote sensing data and geographical data and meteorological data were used in the classification and regression tree (CART) model for data classification and the ANNs model was applied for clustered data to estimate soil moisture. Soil moisture data of Jucheon, Bugui, Sangjeon, Ahncheon sites were used for training and the correlation coefficient between soil moisture estimates and observations was between 0.92 to 0.96, root mean square error was between 1.00 to 1.88%, and mean absolute error was between 0.75 to 1.45%. Cheoncheon2 site was used for validation. Test statistics showed that the correlation coefficient, the root mean square error, the mean absolute error were 0.91, 3.19%, and 2.72% respectively. Results demonstrated that the developed soil moisture model using CART and ANN was able to apply for the estimation of soil moisture distribution.
This study estimated the daily maximum snow depth using the Artificial Neural Network (ANN) model in Korean Peninsula. First, the optimal ANN model structure was determined through the trial-and-error approach. As a result, daily precipitation, daily mean temperature, and daily minimum temperature were chosen as the input data of the ANN. The number of hidden layer was set to 1 and the number of nodes in the hidden layer was set to 10. In case of using the observed value as the input data of the ANN model, the cross validation correlation coefficient was 0.87, which is higher than that of the case in which the daily maximum snow depth was spatially interpolated using the Ordinary Kriging method (0.40). In order to investigate the performance of the ANN model for estimating the daily maximum snow depth of the ungauged area, the input data of the ANN model was spatially interpolated using Ordinary Kriging. In this case, the correlation coefficient of 0.49 was obtained. The performance of the ANN model in mountainous areas above 200m above sea level was found to be somewhat lower than that in the rest of the study area. This result of this study implies that the ANN model can be used effectively for the accurate and immediate estimation of the maximum snow depth over the whole country.
In this study, the artificial neural network model is applied for real-time dam inflow prediction and then evaluated for the prediction lead times (1, 3, 6 hr) in dam basins in Korea. For the training and testing the model, hourly precipitation and inflow are used as input data according to average annual inflow. The results show that the model performance for up to 6 hour is acceptable because the NSE is 0.57 to 0.79 or higher. Totally, the predictive performance of the model in dry seasons is weaker than the performance in wet seasons, and this difference in performance increases in the larger basin. For the 6 hour prediction lead time, the model performance changes as the sequence length increases. These changes are significant for the dry season with increasing sequence length compared to the wet season. Also, with increasing the sequence length, the prediction performance of the model improved during the dry season. Comparison of observed and predicted hydrographs for flood events showed that although the shape of the prediction hydrograph is similar to the observed hydrograph, the peak flow tends to be underestimated and the peak time is delayed depending on the prediction lead time.
Cheolho Lee;Jongsung Lee;Chaebin Kim;Yeounsu Chu;Bora Lee
Ecology and Resilient Infrastructure
/
v.10
no.4
/
pp.161-170
/
2023
We attempted to estimate the carbon accumulation of Hibiscus hamabo and Paliurus ramosissimus, semimangroves native to Jeju Island, by remote sensing and to build an artificial intelligence model that predicts its spatial variation with climatic factors. The aboveground carbon accumulation of semi-mangroves was estimated from the aboveground biomass density (AGBD) provided by the Global Ecosystem Dynamics Investigation (GEDI) lidar upscaled using the normalized difference vegetation index (NDVI) extracted from Sentinel-2 images. In Jeju Island, carbon accumulation per unit area was 16.6 t C/ha for H. hamabo and 21.1 t C/ha for P. ramosissimus. Total carbon accumulation of semi-mangroves was estimated at 11.5 t C on the entire coast of Jeju Island. Random forest analysis was applied to predict carbon accumulation in semi-mangroves according to environmental factors. The deviation of aboveground biomass compared to the distribution area of semi-mangrove forests in Jeju Island was calculated to analyze spatial variation of biomass. The main environmental factors affecting this deviation were the precipitation of the wettest month, the maximum temperature of the warmest month, isothermality, and the mean temperature of the wettest quarter. The carbon accumulation of semi-mangroves predicted by random forest analysis in Jeju Island showed spatial variation in the range of 12.0 t C/ha - 27.6 t C/ha. The remote sensing estimation method and the artificial intelligence prediction method of carbon accumulation in this study can be used as basic data and techniques needed for the conservation and creation of mangroves as carbon sink on the Korean Peninsula.
Quantitative forecasting of groundwater levels for the assessment of groundwater variation and vulnerability is very important. To achieve this purpose, various time series analysis and machine learning techniques have been used. In this study, we developed a prediction model based on LSTM (Long short term memory), one of the artificial neural network (ANN) algorithms, for predicting the daily groundwater level of 11 groundwater wells in Hankyung-myeon, Jeju Island. In general, the groundwater level in Jeju Island is highly autocorrelated with tides and reflected the effects of precipitation. In order to construct an input and output variables based on the characteristics of addressing data, the precipitation data of the corresponding period was added to the groundwater level data. The LSTM neural network was trained using the initial 365-day data showing the four seasons and the remaining data were used for verification to evaluate the fitness of the predictive model. The model was developed using Keras, a Python-based deep learning framework, and the NVIDIA CUDA architecture was implemented to enhance the learning speed. As a result of learning and verifying the groundwater level variation using the LSTM neural network, the coefficient of determination (R2) was 0.98 on average, indicating that the predictive model developed was very accurate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.