• Title/Summary/Keyword: artificial neural network system

Search Result 1,140, Processing Time 0.029 seconds

Application of Artificial Neural Networks for Prediction of the Strength Properties of CSG Materials

  • Lim, Jeongyeul;Kim, Kiyoung;Moon, Hongduk;Jin, Guangri
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.5
    • /
    • pp.13-22
    • /
    • 2018
  • The number of researches on the mechanical properties of cemented sand and gravel (CSG) materials and the application of the CSG Dam has been increased. In order to explain the technical scheme of strength prediction model about the artificial neural network, we obtained the sample data by orthogonal test using the PVA (Polyvinyl alcohol) fiber, different amount of cementing materials and age, and established the efficient evaluation and prediction system. Combined with the analysis about the importance of influence factors, the prediction accuracy was above 95%. This provides the scientific theory for the further application of CSG, and will also be the foundation to apply the artificial neural network theory further in water conservancy project for the future.

Forecasting common mackerel auction price by artificial neural network in Busan Cooperative Fish Market before introducing TAC system in Korea (인공신경망을 활용한 고등어의 위판가격 변동 예측 -어획량 제한이 없었던 TAC제도 시행 이전의 경우-)

  • Hwang, Kang-Seok;Choi, Jung-Hwa;Oh, Taeg-Yun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.72-81
    • /
    • 2012
  • Using artificial neural network (ANN) technique, auction prices for common mackerel were forecasted with the daily total sale and auction price data at the Busan Cooperative Fish Market before introducing Total Allowable Catch (TAC) system, when catch data had no limit in Korea. Virtual input data produced from actual data were used to improve the accuracy of prediction and the suitable neural network was induced for the prediction. We tested 35 networks to be retained 10, and found good performance network with regression ratio of 0.904 and determination coefficient of 0.695. There were significant variations between training and verification errors in this network. Ideally, it should require more training cases to avoid over-learning, which leads to improve performance and makes the results more reliable. And the precision of prediction was improved when environmental factors including physical and biological variables were added. This network for prediction of price and catch was considered to be applicable for other fishes.

Determination and application of the weights for landslide susceptibility mapping using an artificial neural network

  • Lee, Moung-Jin;Won, Joong-Sun;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.71-76
    • /
    • 2003
  • The purpose of this study is the development, application and assessment of probability and artificial neural network methods for assessing landslide susceptibility in a chosen study area. As the basic analysis tool, a Geographic Information System (GIS) was used for spatial data management. A probability method was used for calculating the rating of the relative importance of each factor class to landslide occurrence, For calculating the weight of the relative importance of each factor to landslide occurrence, an artificial neural network method was developed. Using these methods, the landslide susceptibility index was calculated using the rating and weight, and a landslide susceptibility map was produced using the index. The results of the landslide susceptibility analysis, with and without weights, were confirmed from comparison with the landslide location data. The comparison result with weighting was better than the results without weighting. The calculated weight and rating can be used to landslide susceptibility mapping.

  • PDF

Stability Analysis and Effect of CES on ANN Based AGC for Frequency Excursion

  • Raja, J.;Rajan, C.Christober Asir
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.552-560
    • /
    • 2010
  • This paper presents an application of layered Artificial Neural Network controller to study load frequency control problem in power system. The objective of control scheme guarantees that steady state error of frequencies and inadvertent interchange of tie-lines are maintained in a given tolerance limitation. The proposed controller has been designed for a two-area interconnected power system. Only one artificial neural network controller (ANN), which controls the inputs of each area in the power system together, is considered. In this study, back propagation-through time algorithm is used as neural network learning rule. The performance of the power system is simulated by using conventional integral controller and ANN controller, separately. For the first time comparative study has been carried out between SMES and CES unit, all of the areas are included with SMES and CES unit separately. By comparing the results for both cases, the performance of ANN controller with CES unit is found to be better than conventional controllers with SMES, CES and ANN with SMES.

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.

Development of a System Predicting Maximum Displacements of Earth Retaining Walls at Various Excavation Stages Using Artificial Neural Network (인공신경망을 이용한 굴착단계별 흙막이벽체의 최대변위 예측시스템 개발)

  • 김홍택;박성원;권영호;김진홍
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.83-97
    • /
    • 2000
  • In the present study, artificial neural network based on the multi-layer perceptron is used and an optimum model is chosen through the process of efficiency evaluation in order to develop a system predicting maximum displacements of the earth retaining walls at various excavation stages. By analyzing the measured field data collected at various urban excavation sites in Korea, factors influencing on the behaviors of the excavation wall are examined. Among the measured data collected, reliable data are further selected on the basis of the performance ratio and are used as a data base. Data-based measurements are also utilized for both teaming and verifying the artificial neural network model. The learning is carried out by using the back-propagation algorithm based on the steepest descent method. Finally, to verify a validity of the formulated artificial neural network system, both the magnitude and the occurring position of the maximum horizontal displacement are predicted and compared with measured data at real excavation sites not included in the teaming process.

  • PDF

Prediction of Turbidity in Treated Water and the Estimation of the Optimum Feed Concentration of Coagulants in Rapid Mixing Process using an Artificial Neural Network Model (인공신경망 모형을 이용한 급속혼화공정에서 적정 응집제 주입농도 결정 및 응집처리후 탁도의 예측)

  • Jeong, Dong-Hwan;Park, Kyoohong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • The training and prediction modeling using an artificial neural network was implemented to predict the turbidity of treated water as well as to estimate the optimized feed concentration of polyaluminium chloride (PACl) in a water treatment plant. The parameters used in the input layers were pH, temperature, turbidity and alkalinity, while those in output layers were PACl and turbidity of treated water. Levenberg-Marquadt method of feedforward back-propagation perceptron in the neural network toolbox of MATLAB program was used in this study. Correlation coefficients of the training data with the measured data were 0.9997 for PACl and 0.6850 for turbidity and those of the testing data with measured data were 0.9140 for PACl and 0.3828 for turbidity, when four parameters at input layer, 12-12 nodes each at both the first and the second hidden layers, and two parameters(PACl and turbidity) at output layer were used. Although the predictability of PACl was improved, compared to that of the previous studies to use the only coagulant dose as output layer, turbidity in treated water could not be predicted well. Acquisition of more data through several years obtained with the advanced on-line measuring system could make the artificial neural network useful and practical in actual water treatment plants.

MINERAL POTENTIAL MAPPING AND VERIFICATION OF LIMESTONE DEPOSITS USING GIS AND ARTIFICIAL NEURAL NETWORK IN THE GANGREUNG AREA, KOREA

  • Oh, Hyun-Joo;Lee, Sa-Ro
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.710-712
    • /
    • 2006
  • The aim of this study was to analyze limestone deposits potential using an artificial neural network and a Geographic Information System (GIS) environment to identify areas that have not been subjected to the same degree of exploration. For this, a variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential deposits in the Gangreung area, Korea. A spatial database considering deposit, topographic, geologic, geophysical and geochemical data was constructed for the study area using a GIS. The factors relating to 44 limestone deposits were the geological data, geochemical data and geophysical data. These factors were used with an artificial neural network to analyze mineral potential. Each factor’s weight was determined by the back-propagation training method. Training area was applied to analyze and verify the effect of training. Then the mineral deposit potential indices were calculated using the trained back-propagation weights, and potential map was constructed from GIS data. The mineral potential map was then verified by comparison with the known mineral deposit areas. The verification result gave accuracy of 87.31% for training area.

  • PDF

WEED DETECTION BY MACHINE VISION AND ARTIFICIAL NEURAL NETWORK

  • S. I. Cho;Lee, D. S.;J. Y. Jeong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.270-278
    • /
    • 2000
  • A machine vision system using charge coupled device(CCD) camera for the weed detection in a radish farm was developed. Shape features were analyzed with the binary images obtained from color images of radish and weeds. Aspect, Elongation and PTB were selected as significant variables for discriminant models using the STEPDISC option. The selected variables were used in the DISCRIM procedure to compute a discriminant function for classifying images into one of the two classes. Using discriminant analysis, the successful recognition rate was 92% for radish and 98% for weeds. To recognize radish and weeds more effectively than the discriminant analysis, an artificial neural network(ANN) was used. The developed ANN model distinguished the radish from the weeds with 100%. The performance of ANNs was improved to prevent overfitting and to generalize well using a regularization method. The successful recognition rate in the farms was 93.3% for radish and 93.8% for weeds. As a whole, the machine vision system using CCD camera with the artificial neural network was useful to detect weeds in the radish farms.

  • PDF

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.