Prediction of Turbidity in Treated Water and the Estimation of the Optimum Feed Concentration of Coagulants in Rapid Mixing Process using an Artificial Neural Network Model

인공신경망 모형을 이용한 급속혼화공정에서 적정 응집제 주입농도 결정 및 응집처리후 탁도의 예측

  • Received : 2004.08.13
  • Accepted : 2004.10.22
  • Published : 2005.01.30

Abstract

The training and prediction modeling using an artificial neural network was implemented to predict the turbidity of treated water as well as to estimate the optimized feed concentration of polyaluminium chloride (PACl) in a water treatment plant. The parameters used in the input layers were pH, temperature, turbidity and alkalinity, while those in output layers were PACl and turbidity of treated water. Levenberg-Marquadt method of feedforward back-propagation perceptron in the neural network toolbox of MATLAB program was used in this study. Correlation coefficients of the training data with the measured data were 0.9997 for PACl and 0.6850 for turbidity and those of the testing data with measured data were 0.9140 for PACl and 0.3828 for turbidity, when four parameters at input layer, 12-12 nodes each at both the first and the second hidden layers, and two parameters(PACl and turbidity) at output layer were used. Although the predictability of PACl was improved, compared to that of the previous studies to use the only coagulant dose as output layer, turbidity in treated water could not be predicted well. Acquisition of more data through several years obtained with the advanced on-line measuring system could make the artificial neural network useful and practical in actual water treatment plants.

Keywords

References

  1. 김종대, 유민수, 퍼지신경망을 이용한 pH 중화공정의 적응 제어 시스템, 공업화학, 13(6), pp. 544-550 (2002)
  2. 김주환, 상수 관로계통에서 수질예측을 위한 신경망 모형의 적용, 한국수처리기술연구회지, 8(4), pp. 17-27 (2000)
  3. 김중효, 이연길, 박성천, 이관수, 수위결측치 보완을 위한 인공신경망 이론의 적용, 대한토목학회 학술발표회 논문 집, pp. 95-98 (2000)
  4. 김창종, Neural network-based coagulant dosing process in $wat{\epsilon}r$ treatment plant, 수원대학교 산업기술연구소 논문집, 11, pp. 83-88 (1996)
  5. 박보영, 신경망이론을 이용한 응집제 주입율 결정 모델에 관한 연구, 전남대학교 토목공학 석사학위논문 (2000)
  6. 손기철, 민덕기, 김미경, 박호준, 신경회로망을 이용한 파키 라( Parchira aquatic) 의 환경변화에 따른 증산 및 광합성량 예측 모델링, 한국원예학회지, 39(6), pp. 854-857 (1998)
  7. 유병로, 한양수, 연인성, 신경망모형을 이용한 하천의 BOD 예측, 대전산업대학교논문집, 17, pp. 191-199 (2000)
  8. 윤흥주, 김동술, 오종민, GIS와 신경망을 이용한 공간분석, 대한환경공학회 '96 춘계학슬연구발표회 논문집, pp. 125-127 (1996)
  9. 이경훈, 문병석, 오창주, 역전파 알고리즘을 이용한 상수도 일일 급수량 예측, 대한상하수도학회지, 12(4), pp. 43-52 (1998)
  10. 이동수, 신경회로망을 이용한 정수플랜트 약품주입 운전제 어에 관한 연구, 한양대학교 산업대학원 석사학위논문 (1998)
  11. 이종일, 인공신경망 제어기에 의한 생물공정에서 암모니아 농도의 제어, 한국생물공학회 2000 년도 춘계학술발표회 초록집, pp. 173-176 (2000)
  12. 이창용, 김응석, 신현석, 김중훈, 확률적 신경망을 이용한 상수도관 노후도 추정에 관한 연구, 대한토목학회논문집, 20(2-B), pp. 197-210 (2000)
  13. 정효준, 조일형, 이홍근, 인공신경망을 이용한 $TiO_2$$H_2O_2$의 유기물 제거효율 평가, 대한환경공학회지, 24(10), pp 1785-1795 (2002)
  14. 주대성, 최동진, 박회경, 인공신경회로망을 이용한, 응집제 최적 주입률 결정, 한국물환경학희지, 15(1), pp. 23-30 (1999)
  15. 최동진, 박희경, 혼합신경망 모델을 이용한 폐수처리공정의 수질인자의 추정, 한국물환경학회지, 17(1), pp. 87-98 (2001)
  16. 최우택, 임봉수, 김태웅, 고속산화지에서 영양염류 제거효율 예측을 위한 신경망 입력인자의 선택, 대한상하수도학회지, 15(2), pp. 156-162 (2001)
  17. 한재석, 김만식, 하천수계의 장기수질예측을 위한 신경망모형, 한국환경관리학회지, 5(1), pp. 145-152 (1999)
  18. Achenie, L., Butkus, M. A., Grasso, D., Schulthess, C. P., Morris, T., and Hyde J., A comparative study of neural network and mechanistic models for surface complexation, Advances in Environmental Research, 5(2), pp. 137-143 (2001) https://doi.org/10.1016/S1093-0191(00)00050-2
  19. Brion, G. M.. Lingireddy, S., and Neelakantan T. R., Using neural networks to predict peak Cryptosporidium concentrations. Journal of American Water Works Association, 93(1), pp. 99-105 (2001) https://doi.org/10.1002/j.1551-8833.2001.tb09103.x
  20. Chen, W. C., Chang, N. B., and Chen J. C., Advanced hybrid fuzzy-neural controller for industrial wastewater treatment, Journal of Environmental Engineering, 127(11), pp. 1048-1059 (2001) https://doi.org/10.1061/(ASCE)0733-9372(2001)127:11(1048)
  21. Djebbar, Y. and Narbaitz, R. M., Neural network prediction of air stripping KLa, Journal of Environmental Engineering, 128(5), pp. 451-460 (2002) https://doi.org/10.1061/(ASCE)0733-9372(2002)128:5(451)
  22. El-Din, A. G. and Smith, D. W., A neural network model to predict the wastewater inflow incorporating rainfall events, Water Research, 36(5), pp. 1115-1126 (2002) https://doi.org/10.1016/S0043-1354(01)00287-1
  23. Gagnon, C., Grandjean, B. P. A., and Thibault, J., Modelling of coagulant dosage in a water treatment plant, Artificial intelligence in Engineering, 11(4), pp. 401-404 (1997) https://doi.org/10.1016/S0954-1810(97)00010-1
  24. Morimoto, T., De Baerdemaeker, J., and Hashimoto, Y., An intelligent approach for optimal control of fruit-storage process using neural networks and genetic algorithms, Computers and Electronics in Agriculture, 18(2-3), pp. 205-224 (1997) https://doi.org/10.1016/S0168-1699(97)00030-6
  25. Neelakantan, T. R., Lingireddy, S., and Brion, G. M., Effectiveness of different artificial neural network training algorithm in predicting protozoa risks in surface waters, Journal of Environmental Engineering, 128(6), pp. 533-542 (2002) https://doi.org/10.1061/(ASCE)0733-9372(2002)128:6(533)
  26. Pigrarn, G. M. and Macdonald, T. R., Use of neural network models to predict industrial bioreactor effluent quality, Environmental Science and Technology, 35(1), pp. 157-162 (2001) https://doi.org/10.1021/es001264o
  27. Rodriguez, M. J. and Serodes, J. B., Assessing empirical linear and non-linear modelling of residual chlorine in urban drinking water systems, Environmental Modelling & Software, 14(1), pp. 93-102 (1999) https://doi.org/10.1016/S1364-8152(98)00061-9
  28. Sohn, S. H. Oh, S. C., Jo, B. W., and Yeo, Y. K., Prediction of ozone formation based on neural network, Journal of Environmental Engineering, 126(8), pp. 688-696 (2000) https://doi.org/10.1061/(ASCE)0733-9372(2000)126:8(688)
  29. Tay, J. H. and Zhang, X. Y., Neural fuzzy modeling of anaerobic biological wastewater treatment systems, Journal of Environmental Engineering, 125(12), pp. 1149-1159 (1999) https://doi.org/10.1061/(ASCE)0733-9372(1999)125:12(1149)
  30. Zhang, Q. and Stanley, J. S., Real-time water treatment process control with artificial neural network, Journal of Environmental Engineering, 125(2), pp. 153-160 (1999) https://doi.org/10.1061/(ASCE)0733-9372(1999)125:2(153)