• Title/Summary/Keyword: artificial neural network system

Search Result 1,140, Processing Time 0.03 seconds

Design of tracking controller Using Artificial Neural Network & comparison with an Optimal Track ing Controller (인공 신경회로망을 이용한 추적 제어기의 구성 및 최적 추적 제어기와의 비교 연구)

  • Park, Young-Moon;Lee, Gue-Won;Choi, Myoen-Song
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.51-53
    • /
    • 1993
  • This paper proposes a design of the tracking controller using artificial neural network and the compare the result with a result of optimal controller. In practical use, conventional Optimal controller has some limits. First, optimal controller can be designed only for linear system. Second, for many systems state observation is difficult or sometimes impossible. But the controller using artificial neural network does not need mathmatical model of the system including state observation, so it can be used for both linear and nonlinear system with no additional cost for nonlinearity. Designed multi layer neural network controller is composed of two parts, feedforward controller gives a steady state input & feedback controller gives transient input via minimizing the quadratic cost function. From the comparison of the results of the simulation of linear & nonlinear plant, the plant controlled by using neural network controller shows the trajectory similar to that of the plant controlled by an optimal controller.

  • PDF

I-V Modeling Based on Artificial Neural Network in Anti-Reflective Coated Solar Cells (반사방지막 태양전지의 I-V특성에 대한 인공신경망 모델링)

  • Hong, DaIn;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.130-134
    • /
    • 2022
  • An anti-reflective coating is used to improve the performance of the solar cell. The anti-reflective coating changes the value of the short-circuit current about the thickness. However, the current-voltage characteristics about the anti-reflective coating are difficult to calculate without simulation tool. In this paper, a modeling technique to determine the short-circuit current value and the current-voltage characteristics in accordance with the thickness is proposed. In addition, artificial neural network is used to predict the short-circuit current with the dependence of temperature and thickness. Simulation results incorporating the artificial neural network model are obtained using MATLAB/Simulink and show the current-voltage characteristic according to the thickness of the anti-reflective coating.

Nonlinear Compensation Using Artificial Neural Network in Radio-over-Fiber System

  • Najarro, Andres Caceres;Kim, Sung-Man
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In radio-over-fiber (RoF) systems, nonlinear compensation is very important to meet the error vector magnitude (EVM) requirement of the mobile network standards. In this study, a nonlinear compensation technique based on an artificial neural network (ANN) is proposed for RoF systems. This technique is based on a backpropagation neural network (BPNN) with one hidden layer and three neuron units in this study. The BPNN obtains the inverse response of the system to compensate for nonlinearities. The EVM of the signal is measured by changing the number of neurons and the hidden layers in a RoF system modeled by a measured data. Based on our simulation results, it is concluded that one hidden layer and three neuron units are adequate for the RoF system. Our results showed that the EVMs were improved from 4.027% to 2.605% by using the proposed ANN compensator.

Precise Tracking Control of Parallel Robot using Artificial Neural Network (인공신경망을 이용한 병렬로봇의 정밀한 추적제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.200-209
    • /
    • 1999
  • This paper presents a precise tracking control scheme for the proposed parallel robot using artificial neural network. This control scheme is composed of three feedback controllers and one feedforward controller. Conventional PD controller and artificial neural network are used as feedback and feedforward controller respectively. A backpropagation learning strategy is applied to the training of artificial neural network, and PD controller outputs are used as target outputs. The PD controllers are designed at the robot dynamics based on inter-relationship between active joints and moving platform. Feedback controllers insure the total stability of system, and feedforward controller generates the control signal for trajectory tracking. The precise tracking performance of proposed control scheme is proved by computer simulation.

  • PDF

Monitoring of Mechanical Seal Failure with Artificial Neural Network (신경회로망을 이용한 미케니컬 실의 이상상태 감시)

  • Lee, W.K.;Lim, S.J.;Namgung, S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.30-37
    • /
    • 1995
  • The mechanical seals, which are installed in rotating machines like pump and compressor, are gengrally used as sealing devices in the many fields of industries. The failure of mechanical seals such as leakage,fast and severe wear, excessive torque, and squeaking results in big problems. To monitor the failure of mechanical seals and to propose the proper monitoring techniques with artificial neural network, sliding wear experiments were conducted. Torque and temperature of the mechanical seals were measured during experiments. Optical microstructure was observed for the wear processing after every 10 minute sliding at rotation speed of 1750 rpm and scanning electron microscopy was also observed. During the experiment, the variation of torque and temperature that meant an abnormal phenomenon, was observed. That experimental data recorded were applied to the developed monitoring system with artificial neural network. This study concludes that torque and temperature of mechanical seals wil be used to identify and to monitor the condition of sliding motion of mechanical seals. An availability to monitor the mechanical seal failure with artificial neural network was confirmed.

  • PDF

Author Identification Using Artificial Neural Network (Artificial Neural Network를 이용한 논문 저자 식별)

  • Jung, Jisoo;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1191-1199
    • /
    • 2016
  • To ensure the fairness, journal reviewers use blind-review system which hides the author information of the journal. Even though the author information is blinded, we could identify the author by looking at the field of the journal or containing words and phrases in the text. In this paper, we collected 315 journals of 20 authors and extracted text data. Bag-of-words were generated after preprocessing and used as an input of artificial neural network. The experiment shows the possibility of circumventing the blind review through identifying the author of the journal. By the experiment, we demonstrate the limitation of the current blind-review system and emphasize the necessity of robust blind-review system.

Typical Models of Artificial Neural Network and Their Application Fields to the Power System (인공신경회로망의 대표적 모델과 전력계통적용에 대한 조사연구)

  • Ko, Yun-Seok;Kim, Ho-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.143-146
    • /
    • 1990
  • The human brain has the most powerful capabilities in thinking, interpreting, remembering, and problem-solving. Artificial neural network is appeared by scientists who have tried to simulate such a human brain. The artificial neural network has the capability of learning, massive parallelism capability and robustness for disturbance which are necessary for power system application. In this paper, We reviewed the typical topologies and learning algorithms of artifical neural networks which can be used for pattern classification. And we surveyed for the applications of artifical neural network to the power system.

  • PDF

ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF WATER QUALITY IN PIPELINE SYSTEMS

  • Kim, Ju-Hwan;Yoon, Jae-Heung
    • Water Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.59-68
    • /
    • 2003
  • The applicabilities and validities of two methodologies fur the prediction of THM (trihalomethane) formation in a water pipeline system were proposed and discussed. One is the multiple regression technique and the other is an artificial neural network technique. There are many factors which influence water quality, especially THMs formations in water pipeline systems. In this study, the prediction models of THM formation in water pipeline systems are developed based on the independent variables proposed by American Water Works Association(AWWA). Multiple linear/nonlinear regression models are estimated and three layer feed-forward artificial neural networks have been used to predict the THM formation in a water pipeline system. Input parameters of the models consist of organic compounds measured in water pipeline systems such as TOC, DOC and UV254. Also, the reaction time to each measuring site along pipeline is used as input parameter calculated by a hydraulic analysis. Using these variables as model parameters, four models are developed. And the predicted results from the four developed models are compared statistically to the measured THMs data set. It is shown that the artificial neural network approaches are much superior to the conventional regression approaches and that the developed models by neural network can be used more efficiently and reproduce more accurately the THMs formation in water pipeline systems, than the conventional regression methods proposed by AWWA.

  • PDF

Maximum Torque Control of IPMSM with Adoptive Leaning Fuzzy-Neural Network (적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어)

  • Chung, Dong-Hwa;Ko, Jae-Sub;Choi, Jung-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.32-43
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. This paper proposes speed control of IPMSM using adaptive learning fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive learning fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive learning fuzzy neural network and artificial neural network.

Local Path Planning for Mobile Robot Using Artificial Neural Network - Potential Field Algorithm (뉴럴 포텐셜 필드 알고리즘을 이용한 이동 로봇의 지역 경로계획)

  • Park, Jong-Hun;Huh, Uk-Youl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1479-1485
    • /
    • 2015
  • Robot's technology was very simple and repetitive in the past. Nowadays, robots are required to perform intelligent operation. So, path planning has been studied extensively to create a path from start position to the goal position. In this paper, potential field algorithm was used for path planning in dynamic environments. It is used for a path plan of mobile robot because it is elegant mathematical analysis and simplicity. However, there are some problems. The problems are collision risk, avoidance path, time attrition. In order to resolve path problems, we amalgamated potential field algorithm with the artificial neural network system. The input of the neural network system is set using relative velocity and location between the robot and the obstacle. The output of the neural network system is used for the weighting factor of the repulsive potential function. The potential field algorithm problem of mobile robot's path planning can be improved by using artificial neural network system. The suggested algorithm was verified by simulations in various dynamic environments.